• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão do ITA sobre conjuntos!

Questão do ITA sobre conjuntos!

Mensagempor Abelardo » Qui Mar 03, 2011 02:03

Denotemos por n(X) o número de elementos de um conjunto finito. Sejam a,b e c conjuntos tais que n(a U b)= 8, n(a U c)= 9, n(b U c)= 10, n(a U b U c)= 11 e n(a\cap b\cap c). Então, n(a) + n(b) + n(c) é igual a:
a) 11
b) 14
c) 15
d) 18
e) 25
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão do ITA sobre conjuntos!

Mensagempor Elcioschin » Qui Mar 03, 2011 14:49

Faltou o valor de A inter B inter C no enunciado
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Questão do ITA sobre conjuntos!

Mensagempor Abelardo » Qui Mar 03, 2011 15:01

Abelardo escreveu:Denotemos por n(X) o número de elementos de um conjunto finito. Sejam a,b e c conjuntos tais que n(a U b)= 8, n(a U c)= 9, n(b U c)= 10, n(a U b U c)= 11 e n(a\cap b\cap c)= 2. Então, n(a) + n(b) + n(c) é igual a:
a) 11
b) 14
c) 15
d) 18
e) 25
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão do ITA sobre conjuntos!

Mensagempor Elcioschin » Qui Mar 03, 2011 18:04

Sejam:

a, b, c = somente A, B, C
Somente A inter B = u
Somente B inter C = v
Somente C inter A = w

I) a + b + (u + v + w) + 2 = 8 -----> a + b + (u + v + w) = 6 ----> I

II) a + c + (u + v + w) + 2 = 9 -----> a + c + (u + v + w) = 7 ----> II

III) b + c + (u + v + w) + 2 = 10 -----> b + c + (u + v + w) = 8 ----> III

Somando as três equações ----> 2*(a + b + c) + 3*(u + v + w) = 21 ----> IV

(a + b + c) + (u + v + w) + 2 = 11 ----> (a + b + c) + (u + v + w) = 9 ----> (a + b + c) = 9 - (u + v + w) ----> V

V em IV ----> 2*[9 - (u + v + w)] + 3*(u + v + w) = 21 ----> 18 + (u + v + w) = 21 ----> u + v + w = 3

Substituindo em V ----> a + b + c = 9 - 3 ----> a + b + c = 6

n(a) + n(b) + n(c) = (a + b + c) + (u + v + w) + 2 ----> n(a) + n(b) + n(c) = 6 + 3 + 2 ---> n(a) + n(b) + n(c) = 11
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Questão do ITA sobre conjuntos!

Mensagempor Abelardo » Sex Mar 04, 2011 00:36

Cara, a resposta é letra d, 18. Eu tentei, mas nada consegui.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão do ITA sobre conjuntos!

Mensagempor LuizAquino » Sex Mar 04, 2011 09:44

n(a \cup b) = 8 \Rightarrow n(a) + n(b) - n(a\cap b) = 8

n(a \cup c) = 9 \Rightarrow n(a) + n(c) - n(a\cap c) = 9

n(b \cup c) = 10 \Rightarrow n(b) + n(c) - n(b\cap c) = 10

n(a \cap b \cap c) = 2


Somando-se essas equações nós obtemos:

n(a) + n(b) + n(c) + [n(a) + n(b) + n(c) - n(a\cap b)  - n(a\cap c) - n(b\cap c) + n(a\cap b \cap c)] = 29

Mas, sabemos que:
n(a \cup b \cup c) = 11 \Rightarrow n(a) + n(b) + n(c) - n(a\cap b)  - n(a\cap c) - n(b\cap c) + n(a\cap b \cap c) = 11

Logo,
n(a) + n(b) + n(c) = 18
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.