• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo volume reservatório

Calculo volume reservatório

Mensagempor fernandocez » Dom Fev 27, 2011 19:00

Olá pessoal, tô com uma questão de concurso que tentei encontrar em livros mas só tem as fórmulas mas eu não consigo só com as fórmulas. Vamos a questão:

59. Um reservatório de gás é feito de um cilindro com um hemisfério em cima, como mostra a figura.

Imagem

O diâmetro do reservatório é de 12m, e a altura total é de 10m. Então, o volume desse reservatório é de, aproximadamente:
resposta: 900 m³

Eu tentei assim, vê se cheguei perto.

Volume da semi-esfera: \frac{2\pi{r}^{3}}{3} = \frac{2.3,14.{6}^{3}}{3}

Volume do cilindro: \pi.{r}^{2}.h = 3,14.6².5

Vol. semi-esfera + vol. do cilindro = 1017,36 (resposta errada).

Eu não sabia o que fazer com a altura e chutei a altura do cilindro 5 a metade do reservatório, mas acho que a altura tá errada porque não encontrei a resposta certa.
Agradeço a algum dos amigo que puder ajudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Calculo volume reservatório

Mensagempor LuizAquino » Dom Fev 27, 2011 19:15

Dica: o "hemisfério" é uma semiesfera de raio 6, portanto a sua altura também é 6.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo volume reservatório

Mensagempor fernandocez » Dom Fev 27, 2011 19:39

Valeu Luiz. Agora eu sei, a altura é igual ao raio da semiesfera. Consegui responder. Difícil é guardar esse monte de fórmula prá hora da prova. Tem várias pra volume, área, Geometria analítica e etc. Teria que ter um ano prá estudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}