por Regina » Sáb Fev 26, 2011 16:21
Estou a meio de um exercício e surgiu-me outra dúvida.
Cheguei a esta equação e tenho que saber o valor de t, mas como faço?

-
Regina
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 25, 2011 14:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em química
- Andamento: cursando
por LuizAquino » Sáb Fev 26, 2011 16:47
Regina escreveu:
Por favor, coloque o texto completo do exercício.
Não há uma forma analítica de resolver essa equação. Ela só pode ser resolvida usando alguma estratégia numérica.
Note que se você efetuar o logaritmo neperiano (ou natural) em ambos os membros, teria algo como:

Aplicando as propriedades de logaritmo, a equação fica:

A partir daqui não há o que fazer analiticamente! Só mesmo usando alguma estratégia numérica!
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Regina » Sáb Fev 26, 2011 17:15
Então é assim. Eu tenho duas equações que indicam a concentração de um medicamento com o passar do tempo. os medicamentos são administrados a duas pessoas diferentes no mesmo instante, t=0, e o enunciado pergunta quando é que as concentrações dos medicamentos nas duas pessoas voltam a ser iguais.
As duas equações são: Indivúduo A

e para o Indivíduo C

Eu igualei as equações

e fui tentando simplificar até me dar

Só se a resolução não for para igualar as expressões...
-
Regina
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 25, 2011 14:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em química
- Andamento: cursando
por LuizAquino » Sáb Fev 26, 2011 17:24
Regina escreveu:As duas equações são: Indivúduo A

e para o Indivíduo C

Eu igualei as equações

e fui tentando simplificar até me dar

A sua simplificação está errada! O correto nesse caso seria você dividir toda a equação por

, ficando com:

Em seguida, você deve efetuar o logaritmo neperiano em ambos os membros:

Aplicando as propriedades de logaritmo, teremos:

Tente continuar a partir daqui.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação exponencial???
por azheng » Sáb Nov 21, 2009 19:47
- 0 Respostas
- 1556 Exibições
- Última mensagem por azheng

Sáb Nov 21, 2009 19:47
Álgebra Elementar
-
- Equação Exponencial
por Adriana Baldussi » Seg Nov 23, 2009 14:41
- 3 Respostas
- 2713 Exibições
- Última mensagem por Molina

Seg Nov 23, 2009 17:07
Álgebra Elementar
-
- Equação Exponencial
por LeonardoSantos » Ter Fev 16, 2010 14:11
- 1 Respostas
- 2720 Exibições
- Última mensagem por Douglasm

Ter Fev 16, 2010 15:46
Funções
-
- Equação exponencial
por cristina » Sex Jun 04, 2010 20:19
- 1 Respostas
- 2169 Exibições
- Última mensagem por Mathmatematica

Sáb Jun 05, 2010 00:27
Sistemas de Equações
-
- Equação exponencial
por nan_henrique » Sáb Jul 10, 2010 13:00
- 1 Respostas
- 2120 Exibições
- Última mensagem por Douglasm

Sáb Jul 10, 2010 13:12
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.