• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial

Equação exponencial

Mensagempor Regina » Sáb Fev 26, 2011 16:21

Estou a meio de um exercício e surgiu-me outra dúvida.

Cheguei a esta equação e tenho que saber o valor de t, mas como faço?
2{t}^{3}={e}^{0,3t}
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 16:47

Regina escreveu:2{t}^{3}={e}^{0,3t}


Por favor, coloque o texto completo do exercício.

Não há uma forma analítica de resolver essa equação. Ela só pode ser resolvida usando alguma estratégia numérica.

Note que se você efetuar o logaritmo neperiano (ou natural) em ambos os membros, teria algo como:
\ln (2{t}^{3})=\ln({e}^{0,3t})

Aplicando as propriedades de logaritmo, a equação fica:
\ln 2 + 3 \ln t= 0,3t

A partir daqui não há o que fazer analiticamente! Só mesmo usando alguma estratégia numérica!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: logaritmos de novo...

Mensagempor Regina » Sáb Fev 26, 2011 17:15

Então é assim. Eu tenho duas equações que indicam a concentração de um medicamento com o passar do tempo. os medicamentos são administrados a duas pessoas diferentes no mesmo instante, t=0, e o enunciado pergunta quando é que as concentrações dos medicamentos nas duas pessoas voltam a ser iguais.

As duas equações são: Indivúduo A A(t)= {4t}^{3}{e}^{-t} e para o Indivíduo C C(t)= {2t}^{3}{e}^{-0,7t}

Eu igualei as equações {4t}^{3}{e}^{-t}={2t}^{3}{e}^{-0,7t}
e fui tentando simplificar até me dar {2t}^{3}={e}^{0,3t}

Só se a resolução não for para igualar as expressões...
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 17:24

Regina escreveu:As duas equações são: Indivúduo A A(t)= {4t}^{3}{e}^{-t} e para o Indivíduo C C(t)= {2t}^{3}{e}^{-0,7t}

Eu igualei as equações {4t}^{3}{e}^{-t}={2t}^{3}{e}^{-0,7t}
e fui tentando simplificar até me dar {2t}^{3}={e}^{0,3t}


A sua simplificação está errada! O correto nesse caso seria você dividir toda a equação por 2t^3, ficando com:
2{e}^{-t}={e}^{-0,7t}

Em seguida, você deve efetuar o logaritmo neperiano em ambos os membros:
\ln(2{e}^{-t})=\ln({e}^{-0,7t})

Aplicando as propriedades de logaritmo, teremos:
\ln 2 - t = - 0,7t

Tente continuar a partir daqui.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.