por Isla » Qua Fev 23, 2011 00:20
como faço para calcular a area a superficie,que é obtida pela revolução do grafico da função dada num intervalo de:

no intervalo

e se função for ;

no intervalo

Ajude-me a entender essas questões.
Desde de já obrigada!
-
Isla
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 23, 2011 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por LuizAquino » Qua Fev 23, 2011 09:07
Se você consultar qualquer livro de cálculo falando sobre aplicações de integral (vide [1], por exemplo), você encontrará a fórmula (e muitas vezes a demostração para ela):
![A = 2\pi\int_a^b f(x)\sqrt{1+[f^\prime(x)]^2}\,dx A = 2\pi\int_a^b f(x)\sqrt{1+[f^\prime(x)]^2}\,dx](/latexrender/pictures/4663b68b51f64c711fd9fdebffdbf672.png)
,
que calcula a área do sólido de revolução gerado pela rotação, em torno do eixo x, do gráfico de f(x) no intervalo [a, b].
Calcular a área da superfície dada por:
1) Rotação de

em torno do eixo x no intervalo [0, 2].
2) Rotação de

em torno do eixo x no intervalo
![\left[0, \frac{\pi}{2}\right] \left[0, \frac{\pi}{2}\right]](/latexrender/pictures/866f4dbe98bdc65af0bd5017e776c6c1.png)
.
Nesses exercícios bastaria você calcular:
1)

2)

Agora é só aplicar as técnicas de integração apropriadas para resolver o exercício. Na primeira integral, você vai precisar fazer a substituição trigonométrica

. Já na segunda, você vai precisar usar a identidade

.
Referência
[1] Cabral, Marco A. P.. Curso de Cálculo de Uma Variável. 2010. Disponível em:
http://www.labma.ufrj.br/~mcabral/livros/index.html
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Isla » Qui Fev 24, 2011 22:14
Isla escreveu:como faço para calcular a area a superficie,que é obtida pela revolução do grafico da função dada num intervalo de:

no intervalo

e se função for ;

no intervalo

Ajude-me a entender essas questões.
Desde de já obrigada!
Luiz, segui suas orientações, não sei se estou indo bem.
a)
Por favor me ajude a concluir meu raciocinio:
![\int\frac{{x}^{2}}{2\sqrt[]{1+{x}^{2}}} \int\frac{{x}^{2}}{2\sqrt[]{1+{x}^{2}}}](/latexrender/pictures/4eae5dffcab4bb03cb70b471dace7b9c.png)
![=(\frac{{sen}^{-1})-x\sqrt[]{{(x}^{2}+1})}{4+c} =(\frac{{sen}^{-1})-x\sqrt[]{{(x}^{2}+1})}{4+c}](/latexrender/pictures/3c98da3a232be4ab307bfaa570c6607b.png)
![\int_{0}^{2}\frac{{x}^{2}}{2\sqrt[]{(1+{x}^{2})}}=\frac{{sen}^{-1}-2\sqrt[]{{2}^{2}+1}}{4} \int_{0}^{2}\frac{{x}^{2}}{2\sqrt[]{(1+{x}^{2})}}=\frac{{sen}^{-1}-2\sqrt[]{{2}^{2}+1}}{4}](/latexrender/pictures/80ff672f103de08d29deeea60fcfdbdd.png)
E agora vou para onde?
Estou no caminho correto?
-
Isla
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 23, 2011 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por LuizAquino » Qui Fev 24, 2011 23:52
Isla escreveu:Por favor me ajude a concluir meu raciocinio:
![\int\frac{{x}^{2}}{2\sqrt[]{1+{x}^{2}}}=(\frac{{sen}^{-1})-x\sqrt[]{{(x}^{2}+1})}{4+c}\int_{0}^{2}\frac{{x}^{2}}{2\sqrt[]{(1+{x}^{2})}}=\frac{{sen}^{-1}-2\sqrt[]{{2}^{2}+1}}{4} \int\frac{{x}^{2}}{2\sqrt[]{1+{x}^{2}}}=(\frac{{sen}^{-1})-x\sqrt[]{{(x}^{2}+1})}{4+c}\int_{0}^{2}\frac{{x}^{2}}{2\sqrt[]{(1+{x}^{2})}}=\frac{{sen}^{-1}-2\sqrt[]{{2}^{2}+1}}{4}](/latexrender/pictures/77f47a8ecb2a1cdc1e8bbc3ec0abd127.png)
E agora vou para onde?
Estou no caminho correto?
Primeiro, o que você escreveu não faz sentido! Por favor, procure ter mais cuidado com o LaTeX! Se tiver dificuldades, use o "Editor de Fórmulas" disponível aqui no fórum.
Como falei, essa integral sai por substituição trigonométrica. Você deve estudar a técnica para poder entender a solução.
De qualquer modo, vou lher dar uma dica. Você pode ver a solução para essa integral na página:
http://www.wolframalpha.com/Ao abrir a página, você deve ver uma imagem como esta abaixo.
Digite no campo de entrada o seguinte comando:
integrate(x^2*sqrt(1+x^2))Isso irá calcular, como esperado, a integral

.
Na próxima página que abrirá, você deve ver algo como a janela abaixo.
Clique no botão "Show steps".
Agora é só estudar a solução.
ObservaçãoVale a pena destacar que você deve usar essa página como uma ferramenta de aprendizado e não como uma muleta! Por isso é fundamental que você estude as técnicas de integração. Até porque, sem esse estudo muito provavelmente você não entenderá a solução.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LuizAquino » Qui Fev 24, 2011 23:56
(...)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LuizAquino » Sex Fev 25, 2011 00:02
LuizAquino escreveu:2)

Correção:Eu não poderia ter simplificado dessa maneira, pois

. Na verdade, sabemos que a relação correta é

.
A integral sairá primeiro fazendo a substituição

. Em seguida, será necessário usar a substituição trigonométrica

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo de Áreas com Integral] Duvida sobre como começar
por effting » Ter Out 09, 2012 13:00
- 1 Respostas
- 1773 Exibições
- Última mensagem por effting

Ter Out 09, 2012 14:44
Cálculo: Limites, Derivadas e Integrais
-
- como calcular 3 = (1+5i)(1+i)^8
por elpidiomelo » Seg Nov 16, 2009 18:38
- 5 Respostas
- 3610 Exibições
- Última mensagem por thadeu

Qua Nov 18, 2009 12:26
Funções
-
- como calcular x - x^1/2 + 4 = 2
por jdf01 » Ter Mai 10, 2011 15:52
- 2 Respostas
- 2786 Exibições
- Última mensagem por jdf01

Qua Mai 11, 2011 21:11
Álgebra Elementar
-
- Como calcular o limite
por LAZAROTTI » Ter Mai 01, 2012 23:59
- 2 Respostas
- 2078 Exibições
- Última mensagem por RodrigoMan

Ter Jun 26, 2012 15:48
Cálculo: Limites, Derivadas e Integrais
-
- [Como calcular o valor de X?]
por osmairjordao » Qua Fev 13, 2013 20:59
- 1 Respostas
- 4449 Exibições
- Última mensagem por young_jedi

Dom Fev 17, 2013 10:07
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.