• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exponencial e logaritmo

Exponencial e logaritmo

Mensagempor Emilia » Ter Fev 15, 2011 23:19

Segundo o IBGE, os recenseamentos feitos no Brasil nas
ultimas décadas fornecem os dados mostrados na tabela abaixo:
Ano População
1940 41.236.315
1950 51.944.397
1960 70.191.370
1970 93.139.037
1980 119.002.706
1990 146.352.150
2000 169.544.443
Então:
a) Calcule a taxa média anual de crescimento de 1940 a 2000.
b) A partir dos censos de 1990 e 2000, é possível fazer uma previsão de qual será a população no ano
2020? Qual seria esta população? Qual a taxa média de crescimento anual nesse período?

Resolva utilizando dois modelos: i) crescimento em PG, sendo o primeiro termo da PG em 1990 e o
termo 11º em 2000 e ii) supondo que o crescimento da população é dado por P=P0exp(Kt), onde
P=população, t=tempo em anos e k=constante a ser determinada.
c) Em algum momento os dois modelos citados no item anterior fornecerão a mesmo previsão quanto
a população do país?
d) Considerando a população do ano 2000, em quanto tempo, a partir deste ano, a população
duplicará? Qual seria a taxa média de crescimento anual desta população a partir do ano 2000?
Responda segundo cada modelo utilizado no item b.
e) Os modelos utilizados podem ser considerados realistas?
Emilia
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Ter Nov 30, 2010 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Exponencial e logaritmo

Mensagempor rosimeire » Qua Fev 16, 2011 18:17

Eu consequi resolver a letra, a do exercício : média anual de crescimento de 1940 a 2000, vc deve somar toda a população e dividir por 7, que é a quantidade de população e ai vc obtera o resultado . Não tive tempo ainda de solucionar as outras respostas .gostaria de saber tb. ok!
rosimeire
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 09, 2011 16:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: MATEMÁTICA
Andamento: cursando

Re: Exponencial e logaritmo

Mensagempor IRA_O_CARA » Sáb Fev 19, 2011 10:36

EU CALCULEI A MÉDIA DA SEGUINTE FORMA:
(169544443-41236315)/60 = 5,186% por ano

Iraedson
IRA_O_CARA
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 19, 2011 10:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: MATEMÁTICA
Andamento: cursando

Re: Exponencial e logaritmo

Mensagempor arima » Sáb Fev 19, 2011 12:36

Como ele quer a taxa logo será que não deva fazer a média geometrica? Também estou em duvida.
arima
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sáb Out 23, 2010 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Exponencial e logaritmo

Mensagempor Emilia » Dom Fev 20, 2011 12:49

Iraedson, depois que você dividiu por 60, como chegou na taxa de 5,18%?
Emilia
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Ter Nov 30, 2010 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Exponencial e logaritmo

Mensagempor aguiarubra » Seg Fev 21, 2011 10:16

Emília
Vamos considerar os seguintes cálculos preliminares (eu tenho uma calculadora "Ofi Calc" que obtive, gratuitamente, na web):

q = 169.544.443 - 41.236.315 = 2.138.468,79999999981
P = 41.236.315
i = \frac{q}{P} = \frac{2.138.468,79999999981}{41.236.315} = 0,051858872453
i % = 0,051858872453 . 100 = 5,1858872453

Finalmente, arredondando 5,1858872453 para 5,186 chegamos ao valor 5,186 %
aguiarubra
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Fev 21, 2011 09:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59