• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor john » Seg Fev 14, 2011 16:13

g(x)= (2+x)*e^x

Mostre que g'(x)=(3+x)e^x

Comecei a fazer pela regra do produto.

g'(x)= (2+x)' * e^x + (2+x) * (e^x)'

g'(x)= 1*e^x + (2+x) * 1* (e^x)

g'(x)= e^x + (2+x) * (e^x)

Mas não consigo provar o que é pedido.
Alguém ajuda? Obrigado.
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada

Mensagempor LuizAquino » Seg Fev 14, 2011 22:58

john escreveu:Mas não consigo provar o que é pedido.


Você praticamente já terminou a questão!

Você parou em:
g'(x)= e^x + (2+x) * (e^x)

Mas, isso é o mesmo que:
g'(x)= e^x + 2e^x + xe^x

De onde temos que:
g'(x)= 3e^x + xe^x

Mas, isso é o mesmo que:
g'(x)= (3+x)e^x


Observação
Parece que você não está muito afiado com os conteúdos mais fundamentais de Matemática. Para fazer uma revisão desses conteúdos, indico para você o Canal do Nerckie no YouTube:
http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada

Mensagempor john » Ter Fev 15, 2011 12:41

Sim, luiz tem razão. Não estou muito afiado com os conteúdos fundamentais de Matemática. Obrigado pela recomendação.
Estava treinando outro exercício do género.
Provar que f(x)= ln\frac{x}{4+2x} = f'(x)=\frac{4}{x(4+2x)}
Fiz a derivada pela regra da divisão e obtive:

\frac{4}{(4+2x)^2}

Agora seguindo a derivada do logaritmo fiquei com \frac{4}{(4+2x)^2}/\frac{x}{4+2x}

E depois também diz:
Prove que f''(x)= \frac{-16-16x}{{x}^{2}(4+2x)^2}

Fazendo a derivada fiquei com:

\frac{-16-16x}{(4x+2x^2)^2}

Sei que tenho so exercícios praticamente certos. Só não sei fazer a simplificação final.

Obrigado pela atenção!
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada

Mensagempor LuizAquino » Ter Fev 15, 2011 14:51

Exercício: f(x)  = \ln \frac{x}{4+2x}, calcule f'.

Usando regra da cadeia:
f^\prime (x) = \frac{1}{\frac{x}{4+2x}}\cdot \left(\frac{x}{4+2x}\right)^\prime

Usando a regra do quociente:
f^\prime (x) = \frac{4+2x}{x}\cdot \frac{x^\prime (4+2x) - x(4+2x)^\prime}{(4+2x)^2}

f^\prime (x) = \frac{4+2x}{x}\cdot \frac{4}{(4+2x)^2}

Simplificando os termos (4+2x) e (4+2x)²:

f^\prime (x) = \frac{1}{x}\cdot \frac{4}{4+2x}

f^\prime (x) = \frac{4}{x(4+2x)}


john escreveu:Sim, luiz tem razão. Não estou muito afiado com os conteúdos fundamentais de Matemática. Obrigado pela recomendação.

Tenha certeza que se você investir um tempo para assistir aos vídeos e revisar o conteúdo provavelmente não vai mais errar esse tipo de questão.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada

Mensagempor john » Ter Fev 15, 2011 15:01

Obrigado Luiz. Nem sequer conhecia essa regra da cadeia. Vou pesquisar sobre ela.
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada

Mensagempor john » Sáb Fev 19, 2011 23:00

Estou tentando esta:

Provar que g(x)= ln(\frac{x-2}{x-3}) = g'(x) =\frac{-1}{(x^2-5x+6)}

Eu fiz:

\frac{\frac{1}{x-2}}{x-3}= (\frac{x-2}{x-3})'

(\frac{x-3}{x-2}) \frac{1.x-3-x-2.1}{(x-3)^2}

(\frac{x-3}{x-2}) \frac{x-3-x-2}{(x-3)^2}

Depois simplifiquei. Cortei (x-3) com (x-3)^2

Fiquei com:

\frac{1}{x-2} \frac{-1}{x-3}

Multipliquei e fiquei com:

\frac{-1}{x^2-3x-2x+6}

\frac{-1}{x^2-5x+6}

Está correcto? Fiz bem as regras?
Obrigado.
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada

Mensagempor LuizAquino » Sáb Fev 19, 2011 23:23

john escreveu:Provar que se g(x)= ln(\frac{x-2}{x-3}), então g^\prime(x) =\frac{-1}{(x^2-5x+6)}


john escreveu:Está correcto? Fiz bem as regras?

Correto está, mas você deve tomar cuidado com a escrita, isto é, com a notação usada. Veja como seria a notação correta:

g^\prime(x) = \frac{1}{\frac{x-2}{x-3}}\left(\frac{x-2}{x-3}\right)^\prime

g^\prime (x) = \frac{x-3}{x-2} \left[\frac{1\cdot(x-3)-(x-2)\cdot 1}{(x-3)^2}\right]

g^\prime (x) = \frac{x-3}{x-2} \left[\frac{-1}{(x-3)^2}\right]

g^\prime (x) = \frac{-1}{(x-2)(x-3)}

g^\prime (x) = \frac{-1}{x^2-5x+6}

Uma escrita errada gera um resultado diferente do esperado. Por exemplo, você escreveu:
john escreveu:(\frac{x-3}{x-2}) \frac{1.x-3-x-2.1}{(x-3)^2}


Do jeito que isso está escrito nós temos \left(\frac{x-3}{x-2}\right) \frac{-5}{(x-3)^2} e não \left(\frac{x-3}{x-2}\right) \frac{-1}{(x-3)^2} como era esperado.

Note que o uso dos parênteses faz toda a diferença na expressão \frac{1\cdot(x-3)-(x-2)\cdot 1}{(x-3)^2}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada

Mensagempor john » Dom Fev 20, 2011 00:01

Pois, tem toda a razão. Já num outro dia troquei valores por não colocar parênteses.

Agora tentando outro não consegui.

Provar que g''(x) da mesma função anterior é igual a \frac{2x-5}{(x-2)^2(x-3)^2}

Eu estive fazendo e fiz isto:

g'(x)= ((-1)'.(x^2-5x+6))-((-1)(x^2-5x+6))/((x^2-5x+6)^2)

g'(x)= 0 - ((-1)*2x-5)/((x^2-5x+6)^2)

g'(x)= (2x-5)/((x^2-5x+6)^2)

Não consigo progredir mais. Pode-me ajudar?

Obrigado!
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada

Mensagempor LuizAquino » Dom Fev 20, 2011 00:10

john escreveu:g'(x)= (2x-5)/((x^2-5x+6)^2)

Não consigo progredir mais. Pode-me ajudar?


A questão está praticamente pronta! Lembra-se que (x-2)(x-3) = x^2-5x+6 ? Basta lembrar disso e você termina a questão.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada

Mensagempor john » Dom Fev 20, 2011 00:13

LuizAquino escreveu:
john escreveu:g'(x)= (2x-5)/((x^2-5x+6)^2)

Não consigo progredir mais. Pode-me ajudar?


A questão está praticamente pronta! Lembra-se que (x-2)(x-3) = x^2-5x+6 ? Basta lembrar disso e você termina a questão.

Verdade. Obrigado.
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.