por john » Seg Fev 14, 2011 16:13
g(x)= (2+x)*e^x
Mostre que g'(x)=(3+x)e^x
Comecei a fazer pela regra do produto.
g'(x)= (2+x)' * e^x + (2+x) * (e^x)'
g'(x)= 1*e^x + (2+x) * 1* (e^x)
g'(x)= e^x + (2+x) * (e^x)
Mas não consigo provar o que é pedido.
Alguém ajuda? Obrigado.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Fev 14, 2011 22:58
john escreveu:Mas não consigo provar o que é pedido.
Você praticamente já terminou a questão!
Você parou em:
g'(x)= e^x + (2+x) * (e^x)
Mas, isso é o mesmo que:
g'(x)= e^x + 2e^x + xe^x
De onde temos que:
g'(x)= 3e^x + xe^x
Mas, isso é o mesmo que:
g'(x)= (3+x)e^x
ObservaçãoParece que você não está muito afiado com os conteúdos mais fundamentais de Matemática. Para fazer uma revisão desses conteúdos, indico para você o Canal do Nerckie no YouTube:
http://www.youtube.com/nerckie
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Ter Fev 15, 2011 12:41
Sim, luiz tem razão. Não estou muito afiado com os conteúdos fundamentais de Matemática. Obrigado pela recomendação.
Estava treinando outro exercício do género.
Provar que f(x)= ln

= f'(x)=

Fiz a derivada pela regra da divisão e obtive:

Agora seguindo a derivada do logaritmo fiquei com

/

E depois também diz:
Prove que f''(x)=

Fazendo a derivada fiquei com:

Sei que tenho so exercícios praticamente certos. Só não sei fazer a simplificação final.
Obrigado pela atenção!
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Ter Fev 15, 2011 14:51
Exercício:

, calcule f'.
Usando regra da cadeia:

Usando a regra do quociente:


Simplificando os termos (4+2x) e (4+2x)²:


john escreveu:Sim, luiz tem razão. Não estou muito afiado com os conteúdos fundamentais de Matemática. Obrigado pela recomendação.
Tenha certeza que se você investir um tempo para assistir aos vídeos e revisar o conteúdo provavelmente não vai mais errar esse tipo de questão.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Ter Fev 15, 2011 15:01
Obrigado Luiz. Nem sequer conhecia essa regra da cadeia. Vou pesquisar sobre ela.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por john » Sáb Fev 19, 2011 23:00
Estou tentando esta:
Provar que

Eu fiz:

=

'


Depois simplifiquei. Cortei

com

Fiquei com:

Multipliquei e fiquei com:


Está correcto? Fiz bem as regras?
Obrigado.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Sáb Fev 19, 2011 23:23
john escreveu:Provar que se

, então

john escreveu:Está correcto? Fiz bem as regras?
Correto está, mas você deve tomar cuidado com a escrita, isto é, com a notação usada. Veja como seria a notação correta:

![g^\prime (x) = \frac{x-3}{x-2} \left[\frac{1\cdot(x-3)-(x-2)\cdot 1}{(x-3)^2}\right] g^\prime (x) = \frac{x-3}{x-2} \left[\frac{1\cdot(x-3)-(x-2)\cdot 1}{(x-3)^2}\right]](/latexrender/pictures/c7ea80086040152d739754365d444de5.png)
![g^\prime (x) = \frac{x-3}{x-2} \left[\frac{-1}{(x-3)^2}\right] g^\prime (x) = \frac{x-3}{x-2} \left[\frac{-1}{(x-3)^2}\right]](/latexrender/pictures/04e87793daaf171764631366016612a2.png)


Uma escrita errada gera um resultado diferente do esperado. Por exemplo, você escreveu:
john escreveu:
Do jeito que isso está escrito nós temos

e não

como era esperado.
Note que o uso dos parênteses faz toda a diferença na expressão

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Dom Fev 20, 2011 00:01
Pois, tem toda a razão. Já num outro dia troquei valores por não colocar parênteses.
Agora tentando outro não consegui.
Provar que g''(x) da mesma função anterior é igual a

Eu estive fazendo e fiz isto:
g'(x)= ((-1)'.(x^2-5x+6))-((-1)(x^2-5x+6))/((x^2-5x+6)^2)
g'(x)= 0 - ((-1)*2x-5)/((x^2-5x+6)^2)
g'(x)= (2x-5)/((x^2-5x+6)^2)
Não consigo progredir mais. Pode-me ajudar?
Obrigado!
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Dom Fev 20, 2011 00:10
john escreveu:g'(x)= (2x-5)/((x^2-5x+6)^2)
Não consigo progredir mais. Pode-me ajudar?
A questão está praticamente pronta! Lembra-se que

? Basta lembrar disso e você termina a questão.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Dom Fev 20, 2011 00:13
LuizAquino escreveu:john escreveu:g'(x)= (2x-5)/((x^2-5x+6)^2)
Não consigo progredir mais. Pode-me ajudar?
A questão está praticamente pronta! Lembra-se que

? Basta lembrar disso e você termina a questão.
Verdade. Obrigado.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10494 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10701 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 12954 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14570 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 4963 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.