• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de frações algébricas, como igualar os denominadores?

Soma de frações algébricas, como igualar os denominadores?

Mensagempor lucas7 » Qui Fev 17, 2011 20:55

Boa Noite! Preciso de ajuda:

17) \frac{x+y}{x-y} + \frac{x-y}{x+y} como que eu igualo esses denominadores? Eu não entendi como faz o mmc.

Outro exemplo:

19) \frac{3-x}{1-3x} - \frac{3+x}{1+3x} + \frac{16x-1}{1-9x^2}

Preciso de uma solução numa maneira bem explicativa, passo a passo, para eu poder entender.

Obrigado.
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Soma de frações algébricas, como igualar os denominadore

Mensagempor Cleyson007 » Qui Fev 17, 2011 21:27

Boa noite Lucas!

17) \frac{x+y}{x-y} + \frac{x-y}{x+y}\Leftrightarrow\,\frac{(x+y)(x+y)+(x-y)(x-y)}{(x-y)(x+y)}

O procedimento é simples: O m.m.c é (x+y)(x-y) (Resolve dividindo o mmc pelo denominador, o resultado deverá ser multiplicado pelo numerador).

19) Repare que (1 - 3x) (1 + 3x) = (1 - 9x²) --> Logo o m.m.c é (1 - 9x²).

\frac{(1+3x)(3-x)-(1-3x)(3+x)+16x-1}{(1-3x)(1+3x)} (Aqui o procedimento adotado é o mesmo do exercício 17)

Agora tente desenvolver os parênteses sozinho, ok? Surgindo dúvidas comunique.

Abraços.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Soma de frações algébricas, como igualar os denominadore

Mensagempor Cleyson007 » Qui Fev 17, 2011 21:30

Boa noite Lucas!

17) \frac{x+y}{x-y} + \frac{x-y}{x+y}\Leftrightarrow\,\frac{(x+y)(x+y)+(x-y)(x-y)}{(x-y)(x+y)}

O procedimento é simples: O m.m.c é (x+y)(x-y) (Resolve dividindo o mmc pelo denominador, o resultado deverá ser multiplicado pelo numerador).

Resolvendo os parênteses do numerador:

\frac{(x+y)^2+(x-y)^2}{(x-y)(x+y)}

19) Repare que (1 - 3x) (1 + 3x) = (1 - 9x²) --> Logo o m.m.c é (1 - 9x²).

\frac{(1+3x)(3-x)-(1-3x)(3+x)+16x-1}{(1-3x)(1+3x)} (Aqui o procedimento adotado é o mesmo do exercício 17)

Agora tente desenvolver os parênteses sozinho, ok? Surgindo dúvidas comunique.

Abraços.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Soma de frações algébricas, como igualar os denominadore

Mensagempor lucas7 » Qui Fev 17, 2011 21:42

Tentei, mas acho que não deu certo:

17) \frac{(x+y)(x+y)+(x-y)(x-y)}{(x-y)(x+y)} = \frac{(x+y)+(x-y)}{1} = 2x.... Segundo o gabarito seria \frac{2(x^2+y^2)}{x^2-y^2}

Eu cortei as multiplicações para simplificar, e depois somei onde tinha o sinal de mais, qual o erro?!

ps: cheguei ao resultado certo da 17, sem simplificar ela. por que não dá pra cortar?

19) \frac{(1+3x)(3-x)-(1-3x)(3+x)+16x-1}{(1-3x)(1+3x)} = (3-x)-(3+x)+16x-1 = 16x-1

outra tentativa, sem simplificar inicialmente:
\frac{(3-x+9x-3x^2)-(3+x-9x-3x^2)+16x-1}{1+3x-3x-9x^2} = \frac{-6x^2+16x-1}{1-9x^2}

ps: consegui, o sinal negativo antes dos parentes altera a positividade de todos os números dentro do parênteses.

Segundo o gabarito: \frac{32x-1}{1-9x^2}

Obrigado
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Soma de frações algébricas, como igualar os denominadore

Mensagempor lucas7 » Sex Fev 18, 2011 00:12

Outra:
\frac{a+b}{a-b} + \frac{b-a}{a+b} - \frac{4ab}{a^2-b^2} \Leftrightarrow \frac{(a+b)^2+(a-b)(b-a)-(4ab)}{(a-b)(a+b)}  = \frac{-2ab}{a^2-b^2}

O gabarito diz que a resposta é 0. Qual o erro?
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Soma de frações algébricas, como igualar os denominadore

Mensagempor Cleyson007 » Sex Fev 18, 2011 18:23

Boa tarde Lucas!

Respondendo seu último exercício postado:

\frac{a+b}{a-b}+\frac{b-a}{a+b}-\frac{4ab}{a^2-b^2}

Vou resolver passo-a-passo para você entender melhor o que acontece. Veja:

\frac{(a+b)^2+(a-b)(b-a)-(4ab)}{(a-b)(a+b)}

Desenvolvendo o numerador e o denominador, temos:

\frac{a^2+2ab+b^2+(ab-a^2-b^2+ba)-4ab}{a^2-b^2}

\frac{a^2+2ab+b^2+ab-a^2-b^2+ba-4ab}{a^2-b^2}

Somando os termos do numerador perceberá que dará 0, logo:

\frac{0}{a^2-b^2}=0

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.