• Anúncio Global
    Respostas
    Exibições
    Última mensagem

potência

potência

Mensagempor jose henrique » Dom Fev 13, 2011 13:41

{\left(\sqrt[]{1-\sqrt[3]{a}} \right)}^{6}= {\left(\sqrt[]{1}-\sqrt[6]{a} \right)}^{6} ={\left(1-\sqrt[3]{a} \right)}^{3}

minha dúvida se posso fazer está última operação e se posso qual a propriedade que permite tal operação?

obrigado!!


Mas quando temos uma raiz dentro de outra raiz não podemos multiplicar os índices. assim estou explicando como cheguei a expressão intermediária. o que eu não entendi foi o resultado da terceira expressão que no caso foi a resposta do livro. Minha dúvida principal é como os índices foram reduzidos.

obrigado!!
Editado pela última vez por jose henrique em Dom Fev 13, 2011 17:10, em um total de 1 vez.
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: potência

Mensagempor MarceloFantini » Dom Fev 13, 2011 14:19

Pode fazer a passagem da primeira para a última, mas não existe essa intermediária.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: potência

Mensagempor jose henrique » Ter Fev 15, 2011 11:44

oi bom dia!!, eu só comprendi o porquê da redução dos índices
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: potência

Mensagempor MarceloFantini » Ter Fev 15, 2011 11:57

\sqrt[n]{a - \sqrt[m]{b}} \neq \sqrt[n]{a} - \sqrt[m]{b}

Porém, a passagem da primeira para a última é válida:

\left(\sqrt{1 - \sqrt[3]{a}}\right)^6 = \left(1 - \sqrt[3]{a}\right)^{\frac{1}{2} \times 6} = (1 - \sqrt[3]{a})^3
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.