por jose henrique » Sáb Fev 12, 2011 16:42
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por MarceloFantini » Sáb Fev 12, 2011 17:23

O número inteiro mais próximo é -14. E a propósito, a questão deveria ser "encontre o
maior número inteiro tal que", pois você poderia simplesmente dizer -1000 e pronto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Fev 12, 2011 17:29
A anlisando o código LaTeX que você escreveu, acredito que você estava querendo dizer:
Na sua mensagem original, você escreveu o seguinte comando:
q\prec-\frac{187}{13}\precq+1
Note que você escreveu
\precq ao invés de
\prec q.
Além disso, você deve usar o símbolo < e não

nesse caso.
Agora vamos a solução.
Note que -187/13 é aproximadamente
-14,385.
Esse número deve estar entre dois inteiros consecutivos (isto é, entre
q e
q+1). Portanto, devemos ter que
q = -15.
Se quiser fazer de outra forma, você deve resolver duas inequações:
(a) q < -187/13
Sabemos que -187/13 é aproximadamente
-14,385, então temos que
q < -14,385.
(b) -187/13 < q + 1
(-187/13) - 1< q
(-187 - 13)/13 < q
-200/13 < q
Sabemos que -200/13 é aproximadamente -15,385, então temos que
-15,385 < q.
Juntando as soluções de (a) e (b), então temos que:
-15,385 < q < -14,385Como q é inteiro, então o único valor que atende a essa inequação é -15.
Editado pela última vez por
LuizAquino em Dom Fev 13, 2011 16:51, em um total de 2 vezes.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Dan » Sáb Fev 12, 2011 18:16
LuizAquino, só uma pequena correção (que não muda o resultado). -187/13 é aproximadamente -14,385.
Agora resta saber o que o amiguinho aí em cima queria dizer.
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por jose henrique » Sáb Fev 12, 2011 20:41
obrigado a todos, realmente na hora de postar cometi um erro que foi percebido pelo colega. Mesmo assim consegui através das explicações obter êxito.
Obrigado, boa noite!!
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Número inteiro
por thadeu » Qua Nov 18, 2009 19:27
- 0 Respostas
- 920 Exibições
- Última mensagem por thadeu

Qua Nov 18, 2009 19:27
Álgebra Elementar
-
- valor inteiro da expressão
por thadeu » Dom Nov 22, 2009 23:20
- 0 Respostas
- 1141 Exibições
- Última mensagem por thadeu

Dom Nov 22, 2009 23:20
Álgebra Elementar
-
- Inteiro Estritamente Positivo
por gustavowelp » Dom Jun 27, 2010 22:18
- 2 Respostas
- 1753 Exibições
- Última mensagem por gustavowelp

Seg Jun 28, 2010 07:01
Sistemas de Equações
-
- (POLIEDRO) Provar que o no. é inteiro
por Carolziiinhaaah » Sex Fev 04, 2011 15:39
- 5 Respostas
- 2775 Exibições
- Última mensagem por Carolziiinhaaah

Sáb Fev 05, 2011 13:59
Álgebra Elementar
-
- [Inequação] Menor Inteiro Positivo
por CJunior » Qui Fev 06, 2014 21:37
- 2 Respostas
- 1933 Exibições
- Última mensagem por e8group

Qui Fev 06, 2014 22:30
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.