por epicfail » Seg Fev 07, 2011 16:49
Estou travado há 5 dias. Não consegui encontrar ninguém para me ajudar até agora. O dúvida surgiu enquanto eu resolvia alguns exercícios do Caderno da turma ITA Poliedro. Exercícios de revisão de álgebra elementar.
Trabalhando com várias incognitas, x, m, p, os exercicios pedem para achar os valores que tornam a equação impossivel, outros para que a equação nao tenha solução.
o que encontrei foi pra IMPOSSIVEL x = -x
MAS para a equação SEM SOLUÇÃO x - x = 5 + p, tal que p diferente de -5
Por que ? Se é impossivel, consequentemente não tem solução, ou eu tou errado ? Por que p tem que ser diferente de -5 ? Por que nao posso zerar ?
1) m²x - m² = 2m + 2mx, R.:2. Valor de m que torna equação impossível.
4x - 4 = 4 + 4x
(m é igual a 2, substitui 2 em m, não em -m. Mas se eu substituisse em -m²)
4x + 4 = 4 + 4x
0 = 0
2) (2m-1).x = 3p -x - 2, R.: m = 0 e p diferente 2/3. Valor de m e p que tornam a equação sem solução.
- x = 6 - x - 2
0 = 4(qualquer valor diferente de 2/3), equação sem solução, mas não impossível
caso p 2/3
0 = 0, equação impossível, mas sem solução(?)
Por favor, se alguém puder esclarecer estas dúvidas ficarei grato.
-
epicfail
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Fev 07, 2011 16:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Ter Fev 08, 2011 09:53
1) m²x - m² = 2m + 2mx, R.:2. Valor de m que torna equação impossível.
4x - 4 = 4 + 4x
(m é igual a 2, substitui 2 em m, não em -m. Mas se eu substituisse em -m²)
4x + 4 = 4 + 4x
0 = 0





Epicfail,
para que a eq. seja impossível, deverá igualar seu denominador a zero.
daí,
m - 2 = 0
m = 2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Ter Fev 08, 2011 09:59
2) (2m-1).x = 3p -x - 2, R.: m = 0 e p diferente 2/3. Valor de m e p que tornam a equação sem solução.






Se uma eq. não tem solução, ela é impossível:
2m = 0
m = 0Assim como na questão anterior, seu numerador é diferente (#) de zero.
3p - 2 # 0
p # 2/3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por epicfail » Qui Fev 10, 2011 18:08
Muito obrigado, danjr5.
-
epicfail
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Fev 07, 2011 16:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sex Fev 11, 2011 15:09
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função de Primeiro Grau
por Najyh » Seg Mai 03, 2010 23:22
- 3 Respostas
- 4641 Exibições
- Última mensagem por MarceloFantini

Ter Mai 04, 2010 22:41
Funções
-
- Equação do primeiro grau
por isaiaspereira » Qui Jan 27, 2011 00:53
- 3 Respostas
- 2646 Exibições
- Última mensagem por Elcioschin

Qui Jan 27, 2011 14:02
Álgebra Elementar
-
- função do primeiro grau
por Abelardo » Qua Abr 27, 2011 19:35
- 2 Respostas
- 3797 Exibições
- Última mensagem por Abelardo

Qui Abr 28, 2011 11:08
Álgebra Elementar
-
- Função do Primeiro Grau
por Rafael16 » Sex Jan 11, 2013 21:20
- 2 Respostas
- 3692 Exibições
- Última mensagem por DanielFerreira

Sex Jan 11, 2013 22:27
Funções
-
- Equação do primeiro grau
por Netu » Sáb Jan 19, 2013 20:20
- 1 Respostas
- 1383 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 19, 2013 20:41
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.