• Anúncio Global
    Respostas
    Exibições
    Última mensagem

combinação

combinação

Mensagempor marcio » Ter Set 09, 2008 10:21

Bom dia!

Ajudem-me.

Uma fila de cadeiras no cinema tem 20 poltronas. De quantos modos 6 casais podem se sentar nessas poltronas de modo que nenhum marido se sente separado de sua mulher? - combinação

marcio
marcio
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 09, 2008 10:03
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas
Andamento: cursando

Re: combinação

Mensagempor Molina » Ter Set 09, 2008 13:27

Boa tarde, Marcio.

Você deve analisar três possibilidades do problema e depois multiplicar esses valores:

I) Tomando cada casal como um "corpo", temos 2 possibilidades de permutação em cada "corpo", e portanto {2}^{6} possibilidades em todos os "corpos". Isso deve-se ao fato de que a mulher pode trocar de lugar com o homem e mesmo assim ficará ao lado dele.

II) Os casais tem 6! possibilidades de se permutarem nas posições que os mesmo ocupam. Ou seja, os casais podem trocar de posição com outro casal, e mesmo assim respeitarão a condição de permanecerem em casais.

III) Temos 6 "corpos" representando os casais (no total, 12 pessoas) e 8 espaços vazios. Há, então \binom{14}{6} maneiras de se escolherem seis casais específicos para ocuparem as posições deles.

De I) II) e III) temos: {2}^{6}* 6!* \binom{14}{6}


Espero ter ajudado.
Bom estudo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: combinação

Mensagempor marcio » Ter Set 09, 2008 14:40

Molina, muito obrigado!

Terei que treinar muuuiiito para ficar com o raciocínio apurdado na metade do seu.

Marcio
marcio
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 09, 2008 10:03
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas
Andamento: cursando

Re: combinação

Mensagempor paulo testoni » Qui Out 02, 2008 17:08

Hola Marcio.

Esse seu exemplo se encontra resolvido nesse link:
http://www.ime.usp.br/~iesus/verao2008/gablista2.pdf
Aproveite e estude a teoria e outros exemplos desse endereço.

Vou apresentar uma maneira pouca coisa diferente de se fazer, veja:

Primeiro vamos "amarrar" cada casal juntos, lembrando que eles
podem inverter entre si.

Pelo Princípio Fundamental da Contagem - PFC: 2*2*2*2*2*2 = 64

Temos agora que fazer o arranjo de 20 - 6 = 14, tomados 6 a 6:

A_{14}^6 = \frac{ 14!}{(14 - 6)!} = \frac{14*13*12*11*10*9*8!}{8!} = 14*13*12*11*10*9 =
2.162.160

Total:

64*2.162.160 = 138.378.240

De acordo com o meu amigo Elcio Fonseca, de Data: 08/02/2006.
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D