por Carolziiinhaaah » Sex Fev 04, 2011 15:35
(ITA) Sobre o polinômio p(x) = x^5 - 5x³ + 4x² - 3x - 2 podemos afirmar que:
a) x = 2 não é raiz de p.
b) p só admite raízes reais, sendo uma delas inteira, duas racionais e duas irracionais.
c) p admite uma única raiz real, sendo ela uma raiz inteira.
d) p só admite raízes reais, sendo duas delas inteiras.
e) p admite somente 3 raízes reais, sendo uma delas inteira e duas irracionais.
-

Carolziiinhaaah
- Usuário Parceiro

-
- Mensagens: 77
- Registrado em: Sex Mai 28, 2010 14:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Sex Fev 04, 2011 17:50
p(x) = x^5 + 0 x^4 - 5x³ + 4x² - 3x - 2
p(2) = 2^5 + - 5*2³ + 4*2² - 3*2 - 2
P(2) = 0 -----> Já temos uma raiz x = 2 ----> Alternativa A descartada
Briott-Ruffini
__|1 ... 0 ... - 5 ... + 4 ... - 3 ... - 2
.2|1 ... 2 ... - 1 ... + 2 ... + 1 ... 0
Quociente ----> q(x) = x^4 + 2x³ - x² + 2x + 1
Pesquisa de raízes racionais ----> Se houver é inteira e vale + 1 ou - 1 ----> Nenhuma delas é raiz
Logo só existem raizes irracionais ou complexas
Teorema de Bolzano:
Para x = 0 -----> q(0) = 1
Para x = -1 ----> q(-1) = - 3
Existe uma raiz irracional no intervalo - 1 < x < 0 ----> Logo existe outra raiz irracional
Logo, só restou alternativa E
Editado pela última vez por
Elcioschin em Sáb Fev 05, 2011 13:39, em um total de 1 vez.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Cleyson007 » Sáb Fev 05, 2011 10:57
Elcio,
por que você usa os valores de x=0 e x=-1 para o Teorema de Bolzano?
Uma outra dúvida:
Os valores q(0) = 1 e q(-1) = - 3 não inflenciam em nada? (Valores dos quocientes)
Aguardo resposta.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarceloFantini » Sáb Fev 05, 2011 13:22
Acredito que a escolha é arbitrária, apenas usou valores de contas fáceis. Ele poderia ter escolhido

e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Elcioschin » Sáb Fev 05, 2011 13:48
A minha escolha do intervalo (-1, 0) foi aleatória: Eu necessitava de um intervalo onde o quociente mudasse de sinal.
Para x = 0 nem é necessário fazer conta, é óbvio que q(0) = 1, isto é, q(0) > 0
Em seguida testei x = - 1 e obtive q(-1) = - 3 ----> q(-1) < 0
Como neste intervalo a função q(x) muda de sinal, isto é uma prova de que existe uma raiz neste intervalo
Os valores de q(x) não influenciam em nada (exceto na mudança do sinal)
Obs.: Eu tinha cometido um erro cálculo do valor de q(-1). Já editei minha mensagem original.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Carolziiinhaaah » Sáb Fev 05, 2011 18:33
Elcio, na seguinte passagem:
"Existe uma raiz irracional no intervalo - 1 < x < 0 ----> Logo existe outra raiz irracional"
Compreendi que exista uma raiz irracional no intervalo, pois a função q(x) muda de sinal..
só não entendi, depois disso, o porquê de haver outra raiz irracional no intervalo ;/
-

Carolziiinhaaah
- Usuário Parceiro

-
- Mensagens: 77
- Registrado em: Sex Mai 28, 2010 14:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Dom Fev 06, 2011 17:01
Num polinômio de coeficientes INTEIROS as raízes irracionais devem aparecer em pares.
Por exemplo se uma raiz é + V3 a outra é - V3
Algo similar acontece com as raízes coomplexas: se uma raiz é 2 + i a outra é 2 - i
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Renato_RJ » Qua Fev 16, 2011 00:32
Pessoal, não existe uma regra de mudança de sinal dos coeficientes indica quantas raízes reais o polinômio pode ter ?
Se "olharmos por este prisma", vemos que a equação muda de sinal 3 vezes, isto é, ela possui 3 raízes reais, uma inteira (pois o colega já provou que 2 é raiz deste polinômio) então restam duas raízes que não são reais....
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação polinomial] Ajuda com essa equação?
por Mkdj21 » Sáb Jan 26, 2013 16:19
- 1 Respostas
- 12396 Exibições
- Última mensagem por young_jedi

Dom Jan 27, 2013 17:15
Equações
-
- Equação Polinomial
por Cleyson007 » Dom Jun 14, 2009 16:21
- 1 Respostas
- 5902 Exibições
- Última mensagem por Cleyson007

Qua Jun 17, 2009 09:20
Polinômios
-
- Equação Polinomial
por gustavowelp » Dom Jun 27, 2010 11:53
- 3 Respostas
- 3141 Exibições
- Última mensagem por Douglasm

Dom Jun 27, 2010 12:37
Sistemas de Equações
-
- Equação polinomial
por cristina » Sáb Set 18, 2010 17:29
- 5 Respostas
- 3982 Exibições
- Última mensagem por alexandre32100

Sex Set 24, 2010 01:45
Polinômios
-
- Equação Polinomial
por Flavio Cacequi » Seg Jun 11, 2018 16:39
- 1 Respostas
- 4881 Exibições
- Última mensagem por DanielFerreira

Sex Set 13, 2019 21:42
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.