• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sobre transformações Lineares

Sobre transformações Lineares

Mensagempor Dethe » Sex Jan 21, 2011 15:47

acabei por ler sobre tnasformações lineares nesse forum..Muito legal!
Mas preciso de uma ajuda para entender melhor este conteudo. E quando for para descobrir a lei de definição for matirzes como neste exemplo?

T:{M}_{2x2}(R)\rightarrow{R}_{3}

tal que T\begin{pmatrix}
   1 & 0  \\ 
   0 & 0 
\end{pmatrix}= (2,0,5) , T \begin{pmatrix}
   1 & 1  \\ 
   0 & 0 
\end{pmatrix}=(0,-1,3), T \begin{pmatrix}
   1 & 1  \\ 
   1 & 0 
\end{pmatrix}=(3,0,0) e T \begin{pmatrix}
   1 & 1  \\ 
   1 & 1 
\end{pmatrix}=(1,0,-2)


Aguardo ajuda e obrigada!

Como faço para calcular a lei de definição de T, nesse caso?
Dethe
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Dez 15, 2010 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Sobre transformações Lineares

Mensagempor LuizAquino » Sex Jan 21, 2011 16:51

Olá Dethe,

O processo é sempre o mesmo.

Primeiro, temos que nos certificar que o conjunto \left\{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},\,\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix},\,\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},\,\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right\} forma uma base para o domínio da transformação linear, nesse caso, {M}_{2x2}(R). É o caso desse exercício.

Agora, vamos escrever qualquer elemento do domínio em função da base dada, isto é, resolver a equação (nas incógnitas k, m, p e r):
k\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + m\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + p\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}+ r\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}

Essa equação é equivalente ao sistema:
\begin{cases}
k + m + p + r = a_{11} \\
m + p + r = a_{12} \\
p + r = a_{21} \\
r = a_{22} \\
\end{cases}


A solução desse sistema é k=a_{11}-a_{12}, m=a_{12}-a_{21}, p=a_{21}-a_{22} e r=a_{22}.

Agora, aplicando a transformação linear:
T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right)=T\left((a_{11}-a_{12})\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + (a_{12}-a_{21})\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + (a_{21}-a_{22})\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}+ a_{22}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right)

=(a_{11}-a_{12})T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) + (a_{12}-a_{21})T\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\right) + (a_{21}-a_{22})T\left(\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}\right)+ a_{22}T\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right)

=(a_{11}-a_{12})(2,\,0,\,5) + (a_{12}-a_{21})(0,\,-1,\,3) + (a_{21}-a_{22})(3,\,0,\,0)+ a_{22}(1,\,0,\,-2)

=(2a_{11}-2a_{12}+3a_{21}-2a_{22},\, -a_{12}+a_{21},\, 5a_{11}-2a_{12}-3a_{21}-2a_{22})

Portanto, temos que:
T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) =(2a_{11}-2a_{12}+3a_{21}-2a_{22},\, -a_{12}+a_{21},\, 5a_{11}-2a_{12}-3a_{21}-2a_{22})

Para conferir sua resposta, basta calcular T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right), T \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\right), T \left(\begin{bmatrix} 1 & 1 \\ 1 & 0 \right)\end{bmatrix}\right) e T \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \right)\end{bmatrix}\right). Faça os cálculos e você verá que está tudo certo conforme os dados do exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.