pertence aos Irracionais?esta coorreto
pertence aos Irracionais?

e chega a uma contradição,chegando a conclusão de que ele só pode ser irracional:
,então:
e
e mdc(a;b)=1![\sqrt[]{10}=\frac{a}{b}\Rightarrow {\sqrt[]{10}}^{2}={\frac{a}{b}}^{2}\Rightarrow 10=\frac{{a}^{2}}{{b}^{2}}\Rightarrow \sqrt[]{10}=\frac{a}{b}\Rightarrow {\sqrt[]{10}}^{2}={\frac{a}{b}}^{2}\Rightarrow 10=\frac{{a}^{2}}{{b}^{2}}\Rightarrow](/latexrender/pictures/55356a00c0720f498776303c7898cae3.png)
.Que implica que
é par e multiplo de 5, por consequência
também é par e multiplo de cinco,visto que
e
pertencem aos inteiros e
diferente de zero.Se
é par então pode ser represantado por
,logo:
.Como
é multipo de 5 ,
também é , e como
também é inteiro,
é par que é um absurdo visto que mdc entre
e
é igual a 1.
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.