• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Metodo de Gauss

Metodo de Gauss

Mensagempor Jaison Werner » Seg Jan 10, 2011 19:11

Resolva o sistema linear utilizando o método de eliminação de Gausse metodo de Gauss-Jordan:
{a+4b+3c=1
{a-3b-2c=5
{2a+5b+4c=4
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Metodo de Gauss

Mensagempor Elcioschin » Ter Jan 11, 2011 22:30

1 .... +4 .... +3 .... +1
1 .... -3 ..... -2 ..... +5 ----> Fila II - Fila I
2 .... +5 .... +4 ..... +4 ----> Fila III - 2*Fila I

1 .... +4 .... +3 .... +1
0 .... -7 ..... -5 ..... +4
0 .... -3 ..... -2 ..... +2 ----> Fila III + (-3/7)*Fila II

1 .... +4 .... +3 .... +1
0 .... -7 ..... -5 ..... +4
0 ..... 0 ..... 1/7 ... +2/7 ----> ----> (1/7)*c = 2/7 ----> c = 2

Agora continue
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Metodo de Gauss

Mensagempor Jaison Werner » Ter Jan 18, 2011 16:07

Não está dando certo continuar.
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Metodo de Gauss

Mensagempor Renato_RJ » Ter Jan 18, 2011 23:42

Jaison, veja, após o escalonamento feito pelo colega Elcioschin, as suas equações ficaram:

a + 4\cdot b + 3 \cdot c = 1

- 7 \cdot b - 5 \cdot c = 4

\frac {c}{7} = \frac{2}{7}


Daí temos que c = 2 e podemos substituir na 2º equação:

-7 \cdot b - 5 \cdot (2) = 4 \Rightarrow \, b = -2

Com c e b nas mãos, podemos achar a facilmente:

a + 4 \cdot (-2) + 3 \cdot (2) = 1 \Rightarrow \, a - 8 + 6 = 1 \Rightarrow \, a = 3

Espero ter ajudado.

[ ]' s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)