por PedroSantos » Dom Jan 09, 2011 16:38
A equação reduzida da circunferência no plano é dada por

em que (
a,
b) é o centro da circunferência.
Questão:
Dada uma circunferência no plano, com raio igual a 3 e um ponto
P pertencente à circunferência de coordenadas

, calcule o par ordenado correspondende ao centro da circunferência.
Eu ainda comecei por aplicar a equação, mas perante duas variáveis ( a e b), concluí rapidamente que existem inúmeras soluções.
Existe um número ilimitado de circunferências, que tendo r=3, passam pelo ponto P.
Estarei correcto?
-
PedroSantos
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Dez 01, 2010 16:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino secundário
- Andamento: cursando
por MarceloFantini » Dom Jan 09, 2011 22:34
Concordo, você só terá uma equação e duas incógnitas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Pedro123 » Seg Jan 10, 2011 14:55
Pedro, seguinte, pelo o que eu entendi do problema, concordo com vc, havéra um número infinito de pontos, porém, não são pontos aleatórios, serão pontos que pertencerão à uma circunferência também, tente desenvolver a equação com os pontos dados, vc chegará à equação de uma circunferência.
abraços
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por Guill » Sáb Fev 25, 2012 12:18
Considere uma circunferência de raio r. Sua equação é dada por:

, onde (a ; b) representa as coordenadas do centro dessa circunferência.
No caso da sua circunferência, teríamos um raio r = 3 e as coordenadas

, que pertencem à circunferência:




Desenvolvendo essa equação quadrática, teremos o valor a em função de b, No entanto, calcularemos os valores do delta para encontrar os valores possíveis de b:

![b = \frac{-1 + \sqrt[]{117}}{2} b = \frac{-1 + \sqrt[]{117}}{2}](/latexrender/pictures/b3d22a058bb3047a28e5d9711cff4d7b.png)
![b = \frac{-1 - \sqrt[]{117}}{2} b = \frac{-1 - \sqrt[]{117}}{2}](/latexrender/pictures/eba4ae7a8dd441ef7443a4f547f96a5c.png)
Dessa forma, o valor de y do centro da circunferência varia entre esses dois valores. Temos, portanto, infinitas circunferências. Se quer imaginar porque isso acontece, basta escolher uma circunferência de raio 3 que possui esse ponto e arrastar ela sem tirar o ponto da superfície. O mais interessante é que o centro faz uma circunferência com esse movimento.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação da Circunferência
por Cleyson007 » Qui Abr 08, 2010 15:35
- 1 Respostas
- 11067 Exibições
- Última mensagem por davi_11

Dom Abr 11, 2010 13:46
Geometria Analítica
-
- Equação da circunferência
por Andreza » Sáb Fev 25, 2012 09:43
- 1 Respostas
- 1420 Exibições
- Última mensagem por Guill

Sáb Fev 25, 2012 11:43
Geometria Analítica
-
- Equação na Circunferência
por Fernandobertolaccini » Dom Mai 11, 2014 14:48
- 1 Respostas
- 1177 Exibições
- Última mensagem por jcmatematica

Sex Set 26, 2014 10:26
Geometria Analítica
-
- Equação da circunferencia
por brunoguim05 » Qua Mai 28, 2014 15:20
- 1 Respostas
- 1209 Exibições
- Última mensagem por jcmatematica

Sex Set 26, 2014 10:15
Equações
-
- Equação da circunferência
por YuriFreire » Seg Ago 25, 2014 23:22
- 2 Respostas
- 1298 Exibições
- Última mensagem por YuriFreire

Ter Ago 26, 2014 22:30
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.