por OtavioBonassi » Sex Jan 07, 2011 15:52
Galera, tenho a seguinte integral :

Eu joguei ela no wolfram e me saiu o resultado ,mas nao tinha nenhum step disponível ,pelo que me lembro deu

, alguem sabe como chegou nesse resultado ? E se possível explicar o conceito ou a tecnica empregada ?
Agora tem um de limite que também deve ser problema conceitual , o limite é esse :

Eu apliquei Logaritmo e tals , depois apliquei l' hopital porque havia uma indeterminação ,mas rodei rodei rodei e nao sai do lugar ,é esse o caminho certo mesmo ?
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por OtavioBonassi » Dom Jan 09, 2011 11:49
Consegui resolver o limite, agora só falta a integral que eu nao consegui captar mesmo
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Renato_RJ » Dom Jan 09, 2011 13:18
EDITADO: Editei o meu post pois havia um erro técnico, para não induzir outros usuários ao mesmo erro resolvi apagar minhas contas...
Abs,
Renato
Editado pela última vez por
Renato_RJ em Dom Jan 09, 2011 16:34, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por OtavioBonassi » Dom Jan 09, 2011 14:16
Mas Renato, voce pode considerar o t como sendo um numero constante e tira-lo pra fora da integral ?
Porque

logo t = raiz quadrada de u , então fica :
![\frac{1}{2}\int_{0}^{x^2}\frac{cosu}{\sqrt[2]{u}} du \frac{1}{2}\int_{0}^{x^2}\frac{cosu}{\sqrt[2]{u}} du](/latexrender/pictures/455a29e996e067d391efc5581ed98b6c.png)
Não ? Ou alguma coisa do gênero ...
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Renato_RJ » Dom Jan 09, 2011 14:21
Grande Otávio...
Seguinte, se a tua variável de integração é u, então t não é integrável, certo ? Logo, pode passar para fora da integral (até onde eu saiba.. rss..). E eu usei substituição simples, que acaba por mudar a variável de integração, repare no meu último post...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por MarceloFantini » Dom Jan 09, 2011 16:11
Onde você conseguiu essa integral? Se não me engano, ela não pode ser resolvida pelos quatro métodos usuais que aprendemos em Cálculo 1 (substituição simples, frações parciais, substituição trigonométrica e integração por partes).
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Renato_RJ » Dom Jan 09, 2011 16:17
Fantini escreveu:Onde você conseguiu essa integral? Se não me engano, ela não pode ser resolvida pelos quatro métodos usuais que aprendemos em Cálculo 1 (substituição simples, frações parciais, substituição trigonométrica e integração por partes).
Sabia que eu tinha errado em algo.. rss...
Fantini, porque eu não posso usar a substituição simples neste caso ? Tem relação com os limites da integral ? Ainda estou "engatinhando" com o cálculo....
Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por MarceloFantini » Dom Jan 09, 2011 16:29
Para que você usasse substituição simples deveria haver um

multiplicando o

, não tem relação com os limites da integral. Quando usamos substituição, não podemos deixar nada da outra variável sobrando, tudo tem que já estar na integral (salvo números). E outra coisa: quando usamos substituição devemos mudar os limites de integração na integral definida.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Renato_RJ » Dom Jan 09, 2011 16:33
Fantini escreveu:Para que você usasse substituição simples deveria haver um

multiplicando o

, não tem relação com os limites da integral. Quando usamos substituição, não podemos deixar nada da outra variável sobrando, tudo tem que já estar na integral (salvo números). E outra coisa: quando usamos substituição devemos mudar os limites de integração na integral definida.
Opa, muito obrigado pela explicação (agora terei mais cuidado com a substituição), vou apagar os meus cálculos para não induzir um erro em quem ler o tópico...
Muito grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por OtavioBonassi » Dom Jan 09, 2011 21:33
nao precisamos necessariamente mudar né ,podemos apenas "esconde-los" até que a integral seja resolvida e voltemos pra variável inicial ,certo ?
E outra pergunta ... Se por um acaso o exercicio pedir a derivada de f(x) ,e f(x) for uma integral definida ,eu nao posso simplismente cancelar a integral né ? hehe Ou seja , a derivada e a integral nao se anulam, ou se anulam ? Me lembro de ter visto isso no Teorema fundamental do calculo, mas nao lembro o conceito em si ,alguem sabe ?
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por MarceloFantini » Dom Jan 09, 2011 22:34
Sim, mas aí vocÊ trata como uma integral indefinida e depois coloca na variável original e evalua nos limites normais.
E sim, o teorema fundamental do cálculo diz que a derivada é a operação inversa da integral. Então, se você derivar uma função, resolve assim:

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por OtavioBonassi » Dom Jan 09, 2011 22:47
entendi Fantini ,valeu mesmo !
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Conceito de Existência
por eli83 » Qua Out 10, 2012 10:33
- 4 Respostas
- 2404 Exibições
- Última mensagem por young_jedi

Qui Out 11, 2012 17:25
Cálculo: Limites, Derivadas e Integrais
-
- Dedução do Conceito de Integral Definida
por Guga1981 » Qua Fev 05, 2020 20:11
- 2 Respostas
- 10385 Exibições
- Última mensagem por Guga1981

Ter Fev 25, 2020 11:21
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Conceito de Limite
por Raphaela_sf » Qui Abr 05, 2012 19:11
- 3 Respostas
- 1964 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
-
- derivada! conceito!
por giulioaltoe » Qua Jul 20, 2011 09:43
- 4 Respostas
- 2621 Exibições
- Última mensagem por giulioaltoe

Qua Jul 20, 2011 12:54
Cálculo: Limites, Derivadas e Integrais
-
- Conceito Formal de Limites
por mindy » Qua Abr 06, 2011 14:50
- 2 Respostas
- 3499 Exibições
- Última mensagem por mindy

Sex Abr 08, 2011 14:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.