• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(UCSAL-BA)num intendo essa questão

(UCSAL-BA)num intendo essa questão

Mensagempor natanskt » Sáb Dez 11, 2010 21:12

o termo independente de x no desenvolvimento de (\frac{3}{2}.x^2-\frac{1}{3x})^6
nem vou colocar alternativas,só que quero saber como começa,eu fiz varias dessas questões,só que não tinha o x^2 multiplicando,eu queria saber o que fazer com ele.
se eu multiplico por 3 ficaria 3x^2/2 isso procede? só quero intender o começo.valeu
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (UCSAL-BA)num intendo essa questão

Mensagempor DanielFerreira » Sáb Mar 03, 2012 23:11

natanskt escreveu:o termo independente de x no desenvolvimento de (\frac{3}{2}.x^2-\frac{1}{3x})^6
nem vou colocar alternativas,só que quero saber como começa,eu fiz varias dessas questões,só que não tinha o x^2 multiplicando,eu queria saber o que fazer com ele.
se eu multiplico por 3 ficaria 3x^2/2 isso procede? só quero intender o começo.valeu

\begin{pmatrix}
   6  \\ 
   0 
\end{pmatrix} . (\frac{3}{2}x^2)^6 . (\frac{1}{3x})^0 + \begin{pmatrix}
   6  \\ 
   1 
\end{pmatrix} . (\frac{3}{2}x^2)^5 . (\frac{1}{3x})^1 + ... + \begin{pmatrix}
   6  \\ 
   6 
\end{pmatrix} . (\frac{3}{2}x^2)^0 . (\frac{1}{3x})^6

Vc deverá encontrar os expoentes de x de modo que a soma resulte zero (nulo).

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} = \frac{n!}{(n - p)!p!} = \frac{6.5.4!}{2! 4!} = \frac{6.5}{2.1} = 15

(\frac{3x^2}{2})^2 = \frac{9x^4}{4}

(\frac{1}{3x})^4 = \frac{1}{81x^4}


\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 15 . \frac{9x^4}{4} . \frac{1}{81x^4} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 15 . \frac{1}{4} . \frac{1}{9} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 5 . \frac{1}{4} . \frac{1}{2} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = \frac{5}{8}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}