por c_zaidan » Qua Dez 08, 2010 17:51
SOCORRO!3 profissionais fazem 24 peças em 2 horas, e 4 aprendizes fazem 16 peças em 3 horas. Em quantas horas 2 profissionais e 3 aprendizes farão 48 peças?
Não tenho ideia de como fazer qdo tenho prof e aprendizes juntos. Sei q a razão entre as pessoas e as peças é direta e q entre as pessoas e o tempo é inversa. Só
Alguém podia me ajudar?

-
c_zaidan
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Out 22, 2010 15:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por PedroSantos » Qua Dez 08, 2010 18:58
Primeiro define 3 variaveis.Para a quantidade de peças produzidas por hora pelos profissionais, a variável
p.Para a quantidade de peças produzidas por hora pelos aprendizes a variável
a e por fim para a quantidade de horas a variável
h.
Escrevemos três equações:



Agora é resolver o sistema de 3 equações.
-
PedroSantos
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Dez 01, 2010 16:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino secundário
- Andamento: cursando
por c_zaidan » Qua Dez 08, 2010 19:46
Mas nn tem nada a ver com regra de 3 nn? Não teria que mostrar que a relação tempo/qtde de pessoas é inversa?
Se for um sistema, to boiando no assunto msm! Vou tentar resolver o sistema aqui.
Muito obrigada

-
c_zaidan
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Out 22, 2010 15:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- resultado diferente - PG
por jose henrique » Qui Set 30, 2010 23:50
- 4 Respostas
- 3041 Exibições
- Última mensagem por MarceloFantini

Ter Out 05, 2010 01:18
Progressões
-
- [Limite]de sen(x)/x = 1 só se x diferente de ...
por marcosmuscul » Qui Mar 28, 2013 20:34
- 3 Respostas
- 2669 Exibições
- Última mensagem por marcosmuscul

Sex Mar 29, 2013 14:00
Cálculo: Limites, Derivadas e Integrais
-
- gabarito diferente da resposta
por jose henrique » Ter Out 12, 2010 01:10
- 2 Respostas
- 1998 Exibições
- Última mensagem por jose henrique

Seg Out 25, 2010 21:45
Funções
-
- resultado diferente da resposta
por natanskt » Seg Dez 06, 2010 13:39
- 1 Respostas
- 2016 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 14:01
Binômio de Newton
-
- P.A. com razão diferente a partir do A2
por livio isbrecht » Sex Jan 06, 2012 21:44
- 6 Respostas
- 7839 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 17:49
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.