automóveis constam de sete símbolos sendo três letras,
dentre as 26 do alfabeto, seguidas de quatro algarismos.
a) Quantas placas distintas podemos ter sem o algarismo
zero na primeira posição reservada aos algarismos?
b) No conjunto de todas as placas distintas possíveis,
qual a porcentagem daquelas que têm as duas primeiras
letras iguais?
Na resolução pensei em fazer um grupo de 7 do seguinte jeito:
__ . __ . __ . __ .__ . __. __ =
L L L A A A A
sendo os 3 inicias reservados para letras e os 4 finais aos algarismos,
como é são 26 letras e os algarismos devem ir de 1 a 9,
então ficaria 26x26x26x9x9x9x9=115316136 isso na letra A.
mas a resposta encontrada não está de acordo com a resposta de acordo pelo livro.
Desde já agradeço a ajuda ,

placas.
, podemos pensar nas duas primeiras letras como uma só, e realmente são. Portanto estas são
.
;
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.