• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área em Elipses

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Área em Elipses

Mensagempor victoreis1 » Qui Nov 18, 2010 15:36

Duas elipses as quais possuem o mesmo centro, ambas de raio menor igual a 1 cm e raio maior igual a 2 cm, estão dispostas de tal modo que o raio maior de uma forme 90º com o raio maior da outra, conforme a figura:

Imagem

Determine o valor da área da região interna às duas elipses. (que parece um quadrado deformado)

Eu sei que a área de uma elipse é igual a \pi a b, mas não estou conseguindo desenvolver um método para calcular tal área..

alguém tem alguma ideia?
Editado pela última vez por victoreis1 em Qui Nov 18, 2010 17:39, em um total de 1 vez.
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área em Elipses

Mensagempor alexandre32100 » Qui Nov 18, 2010 17:04

Victor, usa o sistema de upload de imagem do site, não to conseguindo visualizar a imagem.
Valeu, espero poder te ajudar.
alexandre32100
 

Re: Área em Elipses

Mensagempor victoreis1 » Qui Nov 18, 2010 17:39

alexandre32100 escreveu:Victor, usa o sistema de upload de imagem do site, não to conseguindo visualizar a imagem.
Valeu, espero poder te ajudar.


tava dando erro mesmo.. ajeitei, vê se tá pegando..
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área em Elipses

Mensagempor MarceloFantini » Qui Nov 18, 2010 19:20

Talvez usando integral dupla saia, porém deve ter um outro método de resolução. Vou pensar mais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área em Elipses

Mensagempor victoreis1 » Qui Nov 18, 2010 20:11

to com uma ideia massa, só preciso de uma ajudinha na integral (sou do 1º ano ainda). me corrijam se eu estiver errado

os pontos de intersecção das elipses, considerando a origem (0,0) como sendo o centro das duas, serão (\pm \sqrt \frac {4}{5} , \pm \sqrt \frac {4}{5}) , facilmente notável igualando as equações das duas.

Logo a área do quadrado formado por essas intersecções é de \frac {16}{5}.

Preciso de que me ajudem a calcular o valor de \int\limits_{-\sqrt\frac{4}{5}}^{\sqrt\frac{4}{5}} \frac{\sqrt{4 - x^2}}{2} pra poder prosseguir..

EDIT: calculando a integral usando wolfram alpha, concluí o problema achando que a área = 8 tan^{-1}{(\frac{1}{2})}

aproximadamente igual a 3,709 cm²

ainda assim, queria que vcs me dissessem como calculo aquela integral.. estou curioso :)
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área em Elipses

Mensagempor MarceloFantini » Qui Nov 18, 2010 20:39

Acredito que o método seja por integral dupla, que no caso teria que dividir em mais de uma região. Ficaria meio chato mas "resolvível".
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área em Elipses

Mensagempor victoreis1 » Qui Nov 18, 2010 20:44

Fantini escreveu:Acredito que o método seja por integral dupla, que no caso teria que dividir em mais de uma região. Ficaria meio chato mas "resolvível".


pode ser, mas desse meu jeito não precisei de integrais duplas, só de uma integral "simples".. e tenho quase certeza de que está certo. além de que com integrais duplas levaria muito mais tempo

e como faço pra saber a função cuja derivada é \frac{\sqrt{4-x^2}}{2} ?
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área em Elipses

Mensagempor MarceloFantini » Qui Nov 18, 2010 21:16

Substituição trigonométrica. Monte um triângulo auxiliar e posicione de acordo, e aí vá encontrando os primeiros em função dos outros. É muito trabalho, talvez seja tão trabalhoso quanto integral dupla.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D