• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(EEAR)-MATRIZ

(EEAR)-MATRIZ

Mensagempor natanskt » Ter Nov 16, 2010 13:02

O PAR (X,Y) SOLUÇÃO DA EQUAÇÃO MATRICIAL \begin{bmatrix}
x & -4 \\
x^2 & y \\
\end{bmatrix}.\begin{bmatrix}
x & 2 \\
y & 1 \\
\end{bmatrix}=\begin{bmatrix}
13 & 2x-4 \\
x^3+y^2 & 8 \\
\end{bmatrix}

tambem não conseguir fazer essa,ela parece facil
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (EEAR)-MATRIZ

Mensagempor Pedro123 » Ter Nov 16, 2010 16:44

Fala natan, blz cara? então, a questão acaba por se resolver com um sistema. Veja bem:


Fazendo a multiplicação de matrizes, no caso, da 1 linha com a 1 coluna, temos:

x² - 4y = 13; agora, fazendo da 2 linha com a segunda coluna:
2x² + y = 8, multiplicando a segunda por 4:

x² - 4y = 13
8x² +4y = 32, agora somando:

9x² = 45
x² = 5 --> x =V5. --> substituindo na 1 equação:

5 - 4y = 13
-4y = 8 --> y = -2.

logo, o par (x,y) = (V5, -2)
confere ai pra ver se é esse o resultado certinho, creio que sim. abraços
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: (EEAR)-MATRIZ

Mensagempor natanskt » Ter Nov 16, 2010 17:06

hey me ajuda nessa duvida daqui
não intendi essa parte eu fiz igual aí
só que...
x²-4y=13 a outra é 2x²+y=8
como faz pra sair daqui,não intendi,me ajuda ae bem explicadinho
vlw
tem que dar raiz de 5 e -2 sua resposta ta certa
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (EEAR)-MATRIZ

Mensagempor Pedro123 » Ter Nov 16, 2010 17:13

bem que que aconteceu, eu cheguei nessa parte certo?


x² - 4y = 13;
2x² + y = 8

veja que isto é um sistema (2 variaveis e 2 equações), que tem varios jeitos de se resolver, eu escolhi o metodo da adição, so que pra fazer isso, tiver de multiplicar uma das duas pra poder tirar uma das variaveis, mas se vc nao entendeu faça o seguinte, isole o Y, e depois substitua na outra que da na mesma, tipo assim:

x²- 4y = 13 --> -4y = 13 - x² --> y = (13 - x²)/ -4 --> y = (x² - 13) / 4
ai vc pega esse y, e substitui no y da outra equação que vc vai conseguir resolver entendeu?

qualquer duvida, é so mandar abraçoss
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: (EEAR)-MATRIZ

Mensagempor natanskt » Ter Nov 16, 2010 17:51

iiii brow,tentei de varios jeitos aqui,uma hora cai em baskara,outra ora da um resultado muito alto
eu tentei assim....
x^2-4y=13
-4y=13-x^2
y=13-x^2/-4
y=x^2-13/4
subistituindo...
2x^2+13-x^2/4=8

daí pra frente acho cada resultado doido,please
tenha paciencia irmão ahsuhasuhuahsuhauhsuhaus
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (EEAR)-MATRIZ

Mensagempor Pedro123 » Sex Nov 19, 2010 12:11

hahah beleza mano, relaxa que isso, tente o seguinte então:

x² - 4y = 13;
2x² + y = 8

a gente tinha isolado o Y de cima correto? tente agora fazer o contrário, isolar o Y de baixo e depois substituir em cima EX:

2x² + y = 8 --> y = 8 - 2x² ai depois joga no outro, consegui partir daqui?? abrasss qualquer coisa fala ae
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59