Perceba que no triângulo FED, retângulo, se usarmos o seno do angulo DFE:
![Sen(60°)=\frac{\sqrt[2]{3}}{2}=\frac{ED}{FD}\Rightarrow FD=\frac{2.ED}{\sqrt[2]{3}}\Rightarrow FD=\frac{2.(4\sqrt[2]{3})}{\sqrt[2]{3}}\Rightarrow FD=8 Sen(60°)=\frac{\sqrt[2]{3}}{2}=\frac{ED}{FD}\Rightarrow FD=\frac{2.ED}{\sqrt[2]{3}}\Rightarrow FD=\frac{2.(4\sqrt[2]{3})}{\sqrt[2]{3}}\Rightarrow FD=8](/latexrender/pictures/bfdac01f6fe473deaec511aa53f07fcc.png)
Sendo FD o ponto médio:

.Utilizando a projeção de F no segmento AC, temos um triângulo retângulo,FF'B.Como F' é projeção de F em AC ele também é ponto médio.Logo:
!['FB=FD-BC\Rightarrow 'FB=8-2\sqrt[2]{3} 'FB=FD-BC\Rightarrow 'FB=8-2\sqrt[2]{3}](/latexrender/pictures/53f2fcb659cdcb3438415b46b2e6038e.png)
.Como o angulo F'FD é igual a 90° ,temos:

.Agora utilizando a tangente de F'FB:
![Tg(30°)=\frac{\sqrt[2]{3}}{3}=\frac{'FB}{F'F}\Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}} \Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}}.\frac{\sqrt[2]{3}}{\sqrt[2]{3}}\Rightarrow F'F='FB.\sqrt[2]{3} Tg(30°)=\frac{\sqrt[2]{3}}{3}=\frac{'FB}{F'F}\Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}} \Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}}.\frac{\sqrt[2]{3}}{\sqrt[2]{3}}\Rightarrow F'F='FB.\sqrt[2]{3}](/latexrender/pictures/655ca1d4a8fafdfabf2f4d52f03b13c4.png)
.É facil perceber que FF' é igual a GA e DC.

Espero ter ajudado.