• Anúncio Global
    Respostas
    Exibições
    Última mensagem

perímetro

perímetro

Mensagempor GeRmE » Seg Nov 15, 2010 13:05

eu não consigo resolver o seguinte exercício, assim que descubro o valor de FE eu empaco. se alguém souber como fazer, sinta-se à vontade.
Anexos
1.JPG
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando

Re: perímetro

Mensagempor VtinxD » Seg Nov 15, 2010 14:33

Perceba que no triângulo FED, retângulo, se usarmos o seno do angulo DFE:
Sen(60°)=\frac{\sqrt[2]{3}}{2}=\frac{ED}{FD}\Rightarrow FD=\frac{2.ED}{\sqrt[2]{3}}\Rightarrow FD=\frac{2.(4\sqrt[2]{3})}{\sqrt[2]{3}}\Rightarrow FD=8
Sendo FD o ponto médio:
FD=GF\Rightarrow 2FD=GD=AC.Utilizando a projeção de F no segmento AC, temos um triângulo retângulo,FF'B.Como F' é projeção de F em AC ele também é ponto médio.Logo:
'FB=FD-BC\Rightarrow 'FB=8-2\sqrt[2]{3}.Como o angulo F'FD é igual a 90° ,temos:
'FFB='FFD-EFD \Rightarrow 'FFB=30°.Agora utilizando a tangente de F'FB:
Tg(30°)=\frac{\sqrt[2]{3}}{3}=\frac{'FB}{F'F}\Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}} \Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}}.\frac{\sqrt[2]{3}}{\sqrt[2]{3}}\Rightarrow  F'F='FB.\sqrt[2]{3}.É facil perceber que FF' é igual a GA e DC.
2p=GD+AC+DC+AG=2GD+2DC=4FD+2F'F
Espero ter ajudado.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: perímetro

Mensagempor GeRmE » Seg Nov 15, 2010 15:51

obrigado amigo
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}