por sandi » Ter Nov 09, 2010 19:31
boa noite.tenho tres problemas pra resolver em probabilidade,mas gostaria que me explicasse como faço
Dois lotes A e B de produtos eletrônicos possuem 100 itens cada. No lote A, há 5 itens defeituosos e, no B, 8 itens defeituosos. Se selecionarmos aleatoriamente um ítem de cada lote, qual é a probabilidade de que:
a) nenhum seja defeituoso?
b) os dois sejam defeituosos?
Você pode escolher entre dois empregos. No emprego em uma indústria, seus ganhos terão distribuição normal com média R$ 2.200,00 e desvio padrão de R$ 200,00. Como vendedor de uma firma, seus ganhos terão distribuição normal com média de R$ 1.600,00 e desvio padrão de R$ 1.000,00. Em qual dos dois há maior probabilidade de você ganhar mais do que R$ 2.500,00?
3. O volume de vendas de determinado produto tem distribuição normal, com média de 900 unidades/mês e desvio padrão de 60 unidades/mês. Se a empresa decide fabricar 1000 unidades no mês em estudo, qual é a probabilidade de que não possa atender a todos os pedidos desse mês, por estar com a produção esgotada?
não consegui entender a explicação do professor...por favor me ajude...
-
sandi
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sáb Set 26, 2009 01:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração
- Andamento: cursando
por 0 kelvin » Ter Nov 09, 2010 20:25
no item a) o raciocínio é por "não escolher". Uma bola preta no meio de 100 brancas. A probabilidade de escolher uma preta é de 1 em 101. Já uma branca, ou a probabilidade de não escolher uma preta, passa a ser de 100 em 101.
Um grupo é independente do outro, mas a questão pede que a mesma escolha ocorra em ambos os casos, então multiplica as probabilidades de cada um.
no item b) tambem são duas ocorrências iguais, para um item defeituoso.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por sandi » Ter Nov 09, 2010 20:48
ok..obrigada
-
sandi
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sáb Set 26, 2009 01:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração
- Andamento: cursando
por PaCeRi » Seg Nov 22, 2010 22:33
Não entendi a resposta...Sandi, vc conseguiu chegar a um resultado?
-
PaCeRi
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Nov 22, 2010 21:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por sandi » Seg Nov 22, 2010 23:40
sim ,consegui...
1- a ) 95/100 x 92/100 = 0,95 x 0,92 = 87,4%
b ) 5/100 x 8/100 = 0,05 x 0,08 = 4%
---------------------------------------------------------------------------------------------------
2 -Na industria,
Z= (2500-2200)/200 = 1,5 =0,9332
P(X<=2500)= 0,9332, então P(X>2500)= 1- 0,9332= 0,0668 = 6,68%
Já como vendedor,
Z= (2500-1600)/1000 = 0,9
P=0,8169, Então P(X<=2500)=0,8169 e P(X>2500)= 1- 0,8169= 0,1831 =18,31%
Como Demonstrado, trabalhando como vendedor a probabilidade de se ganhar mais de 2500 é maior em 11,63%
--------------------------------------------------------------------------------------------------
3 - Para atender às exigências, a empresa deve vender as 1000 unidades produzidas. Agora, se por um lado a produção deve estar esgotada, a média de produção deve ter subtraído o desvio padrão.
Logo, se esse evento for o evento A, temos:
Possibilidades total: 1000
Possibilidades para o evento: 900 - 60 = 840
840/1000 = 21/25
84%
tah ai a resposta
-
sandi
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sáb Set 26, 2009 01:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração
- Andamento: cursando
por PaCeRi » Ter Nov 23, 2010 09:17
Sandi, obrigado.
-
PaCeRi
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Nov 22, 2010 21:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10149 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 20381 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5170 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4405 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4415 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.