• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - "y=a+cos(x+b)"

Trigonometria - "y=a+cos(x+b)"

Mensagempor raimundoocjr » Seg Nov 08, 2010 23:05

Imagem

Tentei resolvê-la da seguinte forma;
Através do {Y}_{max} e do {Y}_{min} obtive o valor do "a", que vale 1, porém, não sei como encontrar o valor do "b" para a conclusão da questão. Por dedução até consigo, entretanto, não sei demonstrar por meio da escrita.

Por favor ajudem-me, desde já obrigado.
raimundoocjr
 

Re: Trigonometria - "y=a+cos(x+b)"

Mensagempor Molina » Seg Nov 08, 2010 23:24

Boa noite.

Um macete que eu costumo usar pra questões deste tipo é esse:

Sendo a \pm \alpha \cdot cos(mx + b)

tem-se que a imagem é dada por: Im=[a- \alpha,a+ \alpha]

Neste seu exercício temos que \alpha = 1

Assim, a imagem é dada por Im=[a- 1,a+ 1]

E a imagem pelo gráfico é [0,2]. Logo, a=1

Assim nos resta apenas as alternativas (B) e (D)

Um simples teste, como por exemplo substituindo em f(x)=1 + cos(x + b), b por \frac{- \pi}{2}, quando x=\frac{\pi}{2} temos que:

f\left(\frac{\pi}{2}\right)=1 + cos\left(\frac{\pi}{2} - \frac{\pi}{2} \right)=2

E o que nos comprova que a alternativa correta é (B).

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Trigonometria - "y=a+cos(x+b)"

Mensagempor raimundoocjr » Ter Nov 09, 2010 13:29

Muito obrigado. Realmente, a substituição é a via mais curta.
raimundoocjr
 


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.