• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema

Sistema

Mensagempor JustForFun » Sáb Nov 06, 2010 20:28

Olá pessoal! Td bem?

Não estou conseguindo enxergar como que posso resolver essa questão:
1- Resolva o sistema, onde x e y são números reais:

4x + y = 11
{x}^{5}+\left(5/1 \right){x}^{4}y}+\left(5/2 \right){x}^{3}{y}^{2}+\left(5/3 \right){x}^{2}{y}^{3}+\left(5/4 \right)x{y}^{4}+{y}^{5}=32
Obs.: Os (5/1), (5/2)... não são frações e sim números binomiais!

Por favor me ajudem! Mesmo transformando para (x+y)[elevado a 5] não consigo saber como resolver...
Muito obrigado!
JustForFun
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Nov 05, 2010 22:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema

Mensagempor Molina » Sáb Nov 06, 2010 22:17

JustForFun escreveu:Olá pessoal! Td bem?

Não estou conseguindo enxergar como que posso resolver essa questão:
1- Resolva o sistema, onde x e y são números reais:

4x + y = 11
{x}^{5}+\left(5/1 \right){x}^{4}y}+\left(5/2 \right){x}^{3}{y}^{2}+\left(5/3 \right){x}^{2}{y}^{3}+\left(5/4 \right)x{y}^{4}+{y}^{5}=32
Obs.: Os (5/1), (5/2)... não são frações e sim números binomiais!

Por favor me ajudem! Mesmo transformando para (x+y)[elevado a 5] não consigo saber como resolver...
Muito obrigado!

Boa noite.

Lembre-se que:

\begin{pmatrix}
   n  \\ 
   p 
\end{pmatrix}= \frac{n!}{(n-p)!p!}

Assim,

\begin{pmatrix}
   5  \\ 
   1 
\end{pmatrix}= \frac{5!}{(5-1)!1!}=5

\begin{pmatrix}
   5  \\ 
   2 
\end{pmatrix}= \frac{5!}{(5-2)!2!}=10

\begin{pmatrix}
   5  \\ 
   3 
\end{pmatrix}= \frac{5!}{(5-3)!3!}=10

\begin{pmatrix}
   5  \\ 
   4 
\end{pmatrix}= \frac{5!}{(5-4)!4!}=5

Reescrevendo o sistema temos:
4x + y = 11
{x}^{5}+5{x}^{4}y}+10{x}^{3}{y}^{2}+10{x}^{2}{y}^{3}+5x{y}^{4}+{y}^{5}=32

e consequentemente...

4x + y = 11
(x+y)^5=32

Reescrevendo o 32 na base 2, temos:

4x + y = 11
(x+y)^5=2^5

e consequentemente...

4x + y = 11
x+y=2

Subtraindo as equações, concluímos que x=3 e y=-1

Qualquer dúvida informe!

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Sistema

Mensagempor JustForFun » Dom Nov 07, 2010 02:36

Muito obrigado molina! Ajudou pra caramba! Vlw MESMO! :-D
Abraços
JustForFun
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Nov 05, 2010 22:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.