• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo com raiz e frações

Logaritmo com raiz e frações

Mensagempor _Liilo » Ter Nov 02, 2010 16:11

{log}_{\frac{1}{2}} \frac{\sqrt[]{2}}{2} = \frac{1}{2}

Boa tarde, no livro que utilizo há duas questão com esse cálculo e não consigo entender.

>> Qual é a base de um sistema logaritmico, onde o lagaritmo é \frac{1}{2} e o antilogaritmo é \frac{\sqrt[]{2}}{2} ?

Sei que a base sera meio porque nos próximos exercícios aparece o seguinte:

>> Calcule o valor de "x", e modo que se tenha

{log}_{\frac{1}{2}} x = \frac{1}{2}

Ambos exercícios eu sei o gabarito, mas não sei como chegar na resposta fazendo o exercício.


De qualquer modo, grata.
_Liilo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 31, 2010 18:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em webdesign
Andamento: formado

Re: Logaritmo com raiz e frações

Mensagempor girl » Ter Nov 02, 2010 17:14

para resolver o

{log}_{\frac{1}{2}}x=\frac{1}{2} voce tem elevar a 1/2 a1/2 e igualar a x

{\frac{1}{2}}^{\frac{1}{2}}=x
\sqrt[2]{\frac{1}{2}}=x
\frac{1}{\sqrt[2]{2}}=x
\frac{1.\sqrt[2]{2}}{{\sqrt[2]{2}}_{\sqrt[2]{2}}}
\frac{\sqrt[2]{2}}{\sqrt[2]{4}}=x
\frac{\sqrt[2]{2}}{2}=x

espero ter te ajudado.
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Logaritmo com raiz e frações

Mensagempor _Liilo » Ter Nov 02, 2010 18:21

oi girl,

não compreendo por que a raiz fica só no demoninador ( \frac{1}{\sqrt[2]{2}} = x )
depois disso acho que vc racionaliza...

Continuo sem entender. Por favor, podes detalhar mais, explicar o porquê da
raiz de 2 ter ido como denominador.


Obrigada.
_Liilo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 31, 2010 18:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em webdesign
Andamento: formado

Re: Logaritmo com raiz e frações

Mensagempor girl » Ter Nov 02, 2010 19:02

a raiz fica so no denominador por que a raiz quadrda de 1 é 1 e depois eu fiz a racionalização nos denominadores .
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Logaritmo com raiz e frações

Mensagempor girl » Ter Nov 02, 2010 19:13

uma regra da potenciação é que quando vc tem um numero elevado a um expoente expresso por uma fração voce o transforma em radical.
por exemplo

{2}^{\frac{1}{3}}

\frac{1}{3} o numerador da fração se torna o expoente do numero 2 e o denominador se torna o indice da raiz

\sqrt[3]{2}

um outro exemplo:
{8}^{\frac{2}{3}}= \sqrt[3]{{8}^{2}}= \sqrt[3]{64}
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Logaritmo com raiz e frações

Mensagempor _Liilo » Ter Nov 02, 2010 19:39

Agora entendi \o/
Muito obrigada, girl
_Liilo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 31, 2010 18:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em webdesign
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?