• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações de 1 grau e 2 grau

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Equações de 1 grau e 2 grau

Mensagempor Neperiano » Sex Out 10, 2008 22:22

Eu acho esses exercícios muito fáceis, mas de qualquer forma coloquei eles em médios, e para deixar eles mais dificies, eu vou colocar mais de um, e vou cobrar toda a resolução dos problemas abaixo.

1) Se você multiplicar um número real x por ele mesmo e do resultado subtrair 14, você vai obter o quíntuplo do número x. Qual é esse número?

2) Determine um número real "a" para que as expressões (3a + 6)/ 8 e (2a + 10)/6 sejam iguais.

3)O número -3 é a raíz da equação x2 - 7x - 2c = 0. Nessas condições, determine o valor do coeficiente c?

4) Resolver as seguintes equações (na incógnita x):

a) 5/x - 2 = 1/4 (x diferente de 0)

b) 3bx + 6bc = 7bx + 3bc
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Equações de 1 grau e 2 grau

Mensagempor Molina » Sex Out 10, 2008 22:44

Maligno escreveu:1) Se você multiplicar um número real x por ele mesmo e do resultado subtrair 14, você vai obter o quíntuplo do número x. Qual é esse número?


{x}^{2}-14=5x
{x}^{2}-5x-14=0
\Delta ={5}^{2}+56
\Delta =81

x'= \frac{5+9}{2}
x'= \frac{14}{2}
x'= 7

x''= \frac{5-9}{2}
x''= \frac{-4}{2}
x''= -2

Fazendo a prova real:
{7}^{2} - 14=35
x''= 7*5=35

{-2}^{2} - 14=-10
x''= -2*5=-10

Solução: x = 7 e x = -2
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equações de 1 grau e 2 grau

Mensagempor Molina » Sex Out 10, 2008 22:46

Agora que li que era pra outras pessoas resolverem.
Desculpa. Nao resolvo as outras ;-)
(Só se ninguem fizer)

Abraços.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equações de 1 grau e 2 grau

Mensagempor Neperiano » Sáb Out 11, 2008 10:40

Não é isso Molina, na verdade é que não tem graça vc responder, vc vai acertar sempre, dai ja aparece a resposta, então assim vc pode resolver mas não coloca a resposta, a menos q vc naum saiba, mas se souber, fala comigo pelo chat e pergunta.

A sua resposta esta correta.

Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Equações de 1 grau e 2 grau

Mensagempor DanielFerreira » Dom Jul 26, 2009 12:45

Maligno escreveu:2) Determine um número real "a" para que as expressões (3a + 6)/ 8 e (2a + 10)/6 sejam iguais.


\frac{3a + 6}{8} = \frac{2a + 10}{6}

18a + 36 = 16a + 80

18a - 16a = 80 - 36

2a = 44

a = 22
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equações de 1 grau e 2 grau

Mensagempor DanielFerreira » Dom Jul 26, 2009 12:48

Maligno escreveu:3)O número -3 é a raíz da equação x2 - 7x - 2c = 0. Nessas condições, determine o valor do coeficiente c?

x² - 7x - 2c = 0

(- 3)² - 7 * (- 3) - 2c = 0

9 + 21 = 2c

2c = 30

c = 15
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equações de 1 grau e 2 grau

Mensagempor DanielFerreira » Dom Jul 26, 2009 12:52

Maligno escreveu:4) Resolver as seguintes equações (na incógnita x):

a) 5/x - 2 = 1/4 (x diferente de 0)


\frac{5}{x} - 2 = \frac{1}{4}

4 * 5 - 2 * 4x = 1 * x

20 - 8x = x

20 = 9x

x = \frac{20}{9}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equações de 1 grau e 2 grau

Mensagempor DanielFerreira » Dom Jul 26, 2009 12:55

Maligno escreveu:4) Resolver as seguintes equações (na incógnita x):

b) 3bx + 6bc = 7bx + 3bc

6bc - 3bc = 7bx - 3bx

4bx = 3bc

4x = 3c

x = \frac{3c}{4}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?