por Alane » Dom Ago 05, 2012 13:03
Francisco deve elaborar uma pesquisa com dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação:aranha,besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, escorpião, carrapato e gafanhoto. Qual a probabilidade de que os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos?
Eu selecionei os artrópodes que não são insetos, deram 8. Então minha conclusão foi se temos 8 artrópodes não insetos que serão selecionados em pares então teremos 56 possibilidades, pois 8 x 7= 56
Então a possibilidade de escolha será 56/144. Simplificando ficou 7/18. Mas o resultado correto é o 7/22. Não consegui chegar a estes 22. Gostaria de saber como eu poderia estar chegando no resultado correto.
Obrigada ^^
-
Alane
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Jul 05, 2012 22:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Dom Ago 05, 2012 15:34
Boa tarde,
Por favor, reveja a classificação, pois:
Insetos:besouro, barata, formiga, abelha, e gafanhoto
Não Insetos:aranha, lagosta, camarão, ácaro, caranguejo, escorpião e carrapato.
Qual a probabilidade de que os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos?
É a probabilidade do primeiro não ser inseto
e a probabilidade do segundo não ser inseto, i.e. :
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por DanielFerreira » Dom Ago 05, 2012 15:48
Outra...
Combinações dos artrópodes: total
Combinações dos artrópodes: não são insetos

Segue que, a probabilidade procurada pode ser obtida calculando
Daí,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por e8group » Dom Ago 05, 2012 15:50
Boa tarde .
Considere o espaço amostral
B = { aranha,besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, escorpião, carrapato , gafanhoto } ,
onde número de insetos equivale a 7 .
Logo a probabilidade de que ambos os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos é denotado por ,

OBS.:

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Nina Luizet » Dom Ago 02, 2015 15:31
Olá, pessoal.
Percebi que vocês utilizaram a combinação chave com o método mais demorado.Aqui vai uma dica:
C12,2 = 12.11/2! = 66
C7,2 = 7.6/2! = 21
P = n(a)/n(e) = 21/66 = 7/22
Nina Luizet
-
Nina Luizet
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Fev 16, 2015 12:39
- Localização: Natal , RN , Brasil
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão CEFET-MG 2012
por Thulio_Parazi » Qui Abr 05, 2012 13:48
- 5 Respostas
- 4817 Exibições
- Última mensagem por fraol

Ter Abr 10, 2012 20:02
Trigonometria
-
- Cefet-mg 2012 questão 03
por Thulio_Parazi » Sex Abr 13, 2012 11:12
- 4 Respostas
- 4483 Exibições
- Última mensagem por fraol

Qua Abr 18, 2012 22:26
Logaritmos
-
- Questão UECE 2012
por Phaniemor » Qui Abr 18, 2013 11:33
- 1 Respostas
- 4478 Exibições
- Última mensagem por DanielFerreira

Qui Abr 18, 2013 12:01
Binômio de Newton
-
- Questão CEFET-MG graduação 2012
por Thulio_Parazi » Qui Abr 05, 2012 11:24
- 1 Respostas
- 2127 Exibições
- Última mensagem por fraol

Sex Abr 06, 2012 20:54
Trigonometria
-
- [PROBABILIDADE] Questão UNEB 2012
por yan_rulez » Qua Dez 12, 2012 00:23
- 5 Respostas
- 7576 Exibições
- Última mensagem por fraol

Qua Dez 12, 2012 20:32
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.