• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questão 69 da Fuvest 2012

questão 69 da Fuvest 2012

Mensagempor Alane » Dom Ago 05, 2012 13:03

Francisco deve elaborar uma pesquisa com dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação:aranha,besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, escorpião, carrapato e gafanhoto. Qual a probabilidade de que os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos?

Eu selecionei os artrópodes que não são insetos, deram 8. Então minha conclusão foi se temos 8 artrópodes não insetos que serão selecionados em pares então teremos 56 possibilidades, pois 8 x 7= 56
Então a possibilidade de escolha será 56/144. Simplificando ficou 7/18. Mas o resultado correto é o 7/22. Não consegui chegar a estes 22. Gostaria de saber como eu poderia estar chegando no resultado correto.

Obrigada ^^
Alane
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 05, 2012 22:42
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: questão 69 da Fuvest 2012

Mensagempor fraol » Dom Ago 05, 2012 15:34

Boa tarde,

Por favor, reveja a classificação, pois:

Insetos:
besouro, barata, formiga, abelha, e gafanhoto

Não Insetos:
aranha, lagosta, camarão, ácaro, caranguejo, escorpião e carrapato.


Qual a probabilidade de que os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos?


É a probabilidade do primeiro não ser inseto e a probabilidade do segundo não ser inseto, i.e. : \frac{7}{12} \cdot \frac{6}{11}

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: questão 69 da Fuvest 2012

Mensagempor DanielFerreira » Dom Ago 05, 2012 15:48

Outra...

Combinações dos artrópodes: total

C_{12,2} = \frac{12 \cdot 11 \cdot 10!}{10! 2!} \\\\ \boxed{C_{12,2} = 66}


Combinações dos artrópodes: não são insetos

C_{7,2} = \frac{7 \cdot 6 \cdot 5!}{5! 2!} \\\\ \boxed{C_{7,2} = 21}


Segue que, a probabilidade procurada pode ser obtida calculando \frac{C_{7,2}}{C_{12,2}}

Daí,
\frac{C_{7,2}}{C_{12,2}} = \\\\ \frac{21}{66} = \\\\ \boxed{\boxed{\frac{7}{22}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: questão 69 da Fuvest 2012

Mensagempor e8group » Dom Ago 05, 2012 15:50

Boa tarde .


Considere o espaço amostral B = { aranha,besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, escorpião, carrapato , gafanhoto } ,

onde número de insetos equivale a 7 .

Logo a probabilidade de que ambos os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos é denotado por ,


p= \frac{\binom{7}{2}}{\binom{12}{2}} = \frac{7}{22}



OBS.: C_{i}^{n} = \binom{n}{i} = \frac{n!}{i!(n-i)!}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: questão 69 da Fuvest 2012

Mensagempor Nina Luizet » Dom Ago 02, 2015 15:31

Olá, pessoal.
Percebi que vocês utilizaram a combinação chave com o método mais demorado.Aqui vai uma dica:
C12,2 = 12.11/2! = 66
C7,2 = 7.6/2! = 21
P = n(a)/n(e) = 21/66 = 7/22
Nina Luizet
Nina Luizet
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 16, 2015 12:39
Localização: Natal , RN , Brasil
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D