por George005 » Sáb Set 06, 2014 01:10
(afa)A quantidade de números distintos, com 4 algarismo, sem repetição que pode ser obtida com os algarismo 0,1,2,3,4 e 5 é
A) 60 B)240 C)300
-
George005
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Ago 14, 2014 22:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Militar
- Andamento: cursando
por DanielFerreira » Dom Set 07, 2014 21:44
George,
boa noite!
Note que, para o primeiro algarismo do número a ser formado temos as seguintes possibilidades: 1, 2, 3, 4 e 5. Isto é, 5, pois o zero não entra!
Para o segundo algarismo temos: o zero e um algarismo a menos que na possibilidade anterior, ou seja, 5;
Para o terceiro, 4 (5 - 1);
Para o último, 3 (4 - 1).
Daí,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por George005 » Seg Set 08, 2014 10:14
Obrigado amigo pela explicação, ajudou muito.
-
George005
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Ago 14, 2014 22:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Militar
- Andamento: cursando
por DanielFerreira » Seg Set 08, 2014 19:36
Não há de quê!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [analise combinatoria] ajuda
por santtus » Sáb Fev 16, 2013 17:41
- 5 Respostas
- 10471 Exibições
- Última mensagem por DanielFerreira

Sex Fev 22, 2013 00:05
Análise Combinatória
-
- ANALISE COMBINATÓRIA - AJUDA URGENTE!
por adriano_casp » Sex Abr 09, 2010 16:39
- 2 Respostas
- 2195 Exibições
- Última mensagem por estudandoMat

Sex Abr 09, 2010 20:07
Estatística
-
- [Análise Combinatória] Ajuda Urgente
por marcelojs » Ter Jun 11, 2013 13:04
- 2 Respostas
- 2040 Exibições
- Última mensagem por marcelojs

Qua Jun 12, 2013 22:03
Análise Combinatória
-
- [Análise Combinatória] Ajuda Urgente
por marcelojs » Qua Jun 12, 2013 09:26
- 1 Respostas
- 1535 Exibições
- Última mensagem por marcelojs

Sex Jun 14, 2013 23:11
Análise Combinatória
-
- [Análise Combinatória] Ajuda Urgente
por marcelojs » Qua Jun 12, 2013 09:34
- 0 Respostas
- 1075 Exibições
- Última mensagem por marcelojs

Qua Jun 12, 2013 09:34
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.