• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorial - Simplificação

Fatorial - Simplificação

Mensagempor Cleyson007 » Sex Jun 14, 2013 15:19

Simplifique a expressão Imagem

Gabarito: K².K !
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fatorial - Simplificação

Mensagempor e8group » Sex Jun 14, 2013 16:13

Cleyson007 lembre-se que k! :=\prod_{\lambda = 1}^{k} \lambda .Assim , (k!)^3 = k^3[(k-1)!]^3  = [(k-1)!]^2 \cdot k^2 \cdot k(k-1)! .Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatorial - Simplificação

Mensagempor Cleyson007 » Sex Jun 14, 2013 16:39

Santhiago, consegui entender essa igualdade (k!)³ = k³ [(k - 1)!]³. Não consegui entender a outra igualdade *-)

Pode me explicar?

No aguardo,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fatorial - Simplificação

Mensagempor e8group » Sex Jun 14, 2013 17:05

Você comprende esta igualdade (k!)^3 = [k(k-1)!]^3 = k^3[(k-1)!]^3 ? Se sim,podemos prosseguir ,note que [(k-1)!]^3 = (k-1)![(k-1)!]^2

Logo ,

k^3[(k-1)!]^3 = k^3((k-1)![(k-1)!]^2) = k^2\cdot k ((k-1)![(k-1)!]^2) =  k^2[(k-1)!]^2(k(k-1)!) .

Mas , k(k-1)! = k! . Portanto , (k!)^3 = k! \cdot k^2 [(k-1)!]^2 .Qualquer dúvida estou à disposição .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatorial - Simplificação

Mensagempor Cleyson007 » Sex Jun 14, 2013 17:15

Consegui entender perfeitamente. Obrigado pela excelente explicação Santhiago!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.