por GabrielMoreira » Dom Nov 11, 2012 00:15
A questão diz o seguinte: No quadro final de madalhas olimpicas em Pequim, a Espanha ficou em 14º lugar com "n" medalhas de ouro. Dado que a quantidade de medalhas de prata é o dobro da quantidade de medalhas de ouro e o total de medalhas de bronze é antecessor impar de n e n é a terça parte do oposto do numero que apresenta a soma dos números inteiros da solução do sistema abaixo:

Podemos afirmar que no quadro final de medalhas a Espanha ficou com:
a) 5 medalhas de ouro, 10 de prata e 3 de bronze
b) 4 medalhas de ouro, 8 de prata e 3 de bronze
c) 7 medalhas de ouro, 14 de prata e 5 de bronze
d) 6 medalhas de ouro, 12 de prata e 5 de bronze
e) 3 medalhas de ouro, 6 de prata e 1 de bronze
Na resolução do sistema pede-se a soma dos numeros inteiros que representam a equação.
Usei o sistema 2x² + 8x - 10 = 0
+ 2 - 12x = 0
Obtive 2x² -4x - 8 = 0
a Soma das raízes é

Como

Entao não haveria um antecessor impar.
RESPOSTA: Letra A
-
GabrielMoreira
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Nov 09, 2012 23:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Dom Nov 11, 2012 01:02
Da segunda equação temos

e daí

. Da primeira equação temos que dividindo tudo por dois segue que

. Somando 4 a cada lado temos

e portanto

, obtendo a seguinte desigualdade:

e

.
Das duas equações obtemos

. A única solução inteira é

, mas

, logo

e a Espanha obteve 3 medalhas de ouro. Pelos dados do enunciado segue que ela teve 6 medalhas de prata e uma medalha de bronze.
Pela dedução acima, discordo do gabarito. Note que se um terço do número de madalhas de ouro é a soma das soluções inteiras da inequação, teremos uma divisão de inteiros cujo resultado é inteiro, isto só é possível se esta divisão for um. Se a resposta for como no gabarito, teríamos

como a soma de inteiros, o que é impossível.
Editado: agora que li que

é a terça parte do "oposto" do número que representa a soma. O que ele quer dizer por "oposto"? Seria inverso multiplicativo? Se for, a resolução permanece. Agora, inverso aditivo também não está fazendo sentido, a menos que a soma das soluções inteiras fosse negativa, o que não está acontecendo. Penso um pouco mais amanhã.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Dom Nov 11, 2012 13:12

O valor de

é dado por:

O número total de medalhas de bronze, de acordo com o enunciado é:

Medalhas de prata:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por MarceloFantini » Seg Nov 12, 2012 05:08
Errei uma desigualdade. Está certo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por GabrielMoreira » Seg Nov 12, 2012 10:41
Muito obrigado!
-
GabrielMoreira
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Nov 09, 2012 23:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Qua Nov 14, 2012 23:22
GabrielMoreira escreveu:Muito obrigado!

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UFRJ 2009 ) Questão do vestibular da ufrj em 2009 me ajudem
por rafael84 » Ter Jul 13, 2010 22:57
- 1 Respostas
- 2590 Exibições
- Última mensagem por Lucio Carvalho

Qui Jul 15, 2010 01:28
Binômio de Newton
-
- [GEOMETRIA PLANA] cmbh 2007 -
por GabrielMoreira » Sex Nov 09, 2012 23:56
- 7 Respostas
- 3711 Exibições
- Última mensagem por DanielFerreira

Dom Nov 11, 2012 13:24
Geometria Plana
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 16383 Exibições
- Última mensagem por Aparecida

Sáb Mai 05, 2012 00:07
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:20
- 4 Respostas
- 12557 Exibições
- Última mensagem por Neilson

Ter Mai 01, 2012 01:23
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:26
- 2 Respostas
- 8480 Exibições
- Última mensagem por Rejane Sampaio

Seg Set 15, 2008 10:08
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.