por GabrielMoreira » Dom Nov 11, 2012 00:15
A questão diz o seguinte: No quadro final de madalhas olimpicas em Pequim, a Espanha ficou em 14º lugar com "n" medalhas de ouro. Dado que a quantidade de medalhas de prata é o dobro da quantidade de medalhas de ouro e o total de medalhas de bronze é antecessor impar de n e n é a terça parte do oposto do numero que apresenta a soma dos números inteiros da solução do sistema abaixo:

Podemos afirmar que no quadro final de medalhas a Espanha ficou com:
a) 5 medalhas de ouro, 10 de prata e 3 de bronze
b) 4 medalhas de ouro, 8 de prata e 3 de bronze
c) 7 medalhas de ouro, 14 de prata e 5 de bronze
d) 6 medalhas de ouro, 12 de prata e 5 de bronze
e) 3 medalhas de ouro, 6 de prata e 1 de bronze
Na resolução do sistema pede-se a soma dos numeros inteiros que representam a equação.
Usei o sistema 2x² + 8x - 10 = 0
+ 2 - 12x = 0
Obtive 2x² -4x - 8 = 0
a Soma das raízes é

Como

Entao não haveria um antecessor impar.
RESPOSTA: Letra A
-
GabrielMoreira
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Nov 09, 2012 23:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Dom Nov 11, 2012 01:02
Da segunda equação temos

e daí

. Da primeira equação temos que dividindo tudo por dois segue que

. Somando 4 a cada lado temos

e portanto

, obtendo a seguinte desigualdade:

e

.
Das duas equações obtemos

. A única solução inteira é

, mas

, logo

e a Espanha obteve 3 medalhas de ouro. Pelos dados do enunciado segue que ela teve 6 medalhas de prata e uma medalha de bronze.
Pela dedução acima, discordo do gabarito. Note que se um terço do número de madalhas de ouro é a soma das soluções inteiras da inequação, teremos uma divisão de inteiros cujo resultado é inteiro, isto só é possível se esta divisão for um. Se a resposta for como no gabarito, teríamos

como a soma de inteiros, o que é impossível.
Editado: agora que li que

é a terça parte do "oposto" do número que representa a soma. O que ele quer dizer por "oposto"? Seria inverso multiplicativo? Se for, a resolução permanece. Agora, inverso aditivo também não está fazendo sentido, a menos que a soma das soluções inteiras fosse negativa, o que não está acontecendo. Penso um pouco mais amanhã.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Dom Nov 11, 2012 13:12

O valor de

é dado por:

O número total de medalhas de bronze, de acordo com o enunciado é:

Medalhas de prata:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por MarceloFantini » Seg Nov 12, 2012 05:08
Errei uma desigualdade. Está certo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por GabrielMoreira » Seg Nov 12, 2012 10:41
Muito obrigado!
-
GabrielMoreira
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Nov 09, 2012 23:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Qua Nov 14, 2012 23:22
GabrielMoreira escreveu:Muito obrigado!

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UFRJ 2009 ) Questão do vestibular da ufrj em 2009 me ajudem
por rafael84 » Ter Jul 13, 2010 22:57
- 1 Respostas
- 2476 Exibições
- Última mensagem por Lucio Carvalho

Qui Jul 15, 2010 01:28
Binômio de Newton
-
- [GEOMETRIA PLANA] cmbh 2007 -
por GabrielMoreira » Sex Nov 09, 2012 23:56
- 7 Respostas
- 3572 Exibições
- Última mensagem por DanielFerreira

Dom Nov 11, 2012 13:24
Geometria Plana
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 15952 Exibições
- Última mensagem por Aparecida

Sáb Mai 05, 2012 00:07
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:20
- 4 Respostas
- 12218 Exibições
- Última mensagem por Neilson

Ter Mai 01, 2012 01:23
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:26
- 2 Respostas
- 8219 Exibições
- Última mensagem por Rejane Sampaio

Seg Set 15, 2008 10:08
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.