por Maria Livia » Sáb Mai 18, 2013 22:39
Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas cores é
-
Maria Livia
- Usuário Parceiro

-
- Mensagens: 79
- Registrado em: Seg Ago 13, 2012 13:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Rafael16 » Sáb Mai 18, 2013 23:18
Boa noite Maria Livia!

- Sem título.png (3.43 KiB) Exibido 14975 vezes
Temos 5 cores.
Em R1 temos então 5 possibilidades. Já em R2 vamos ter só 4, pois em R1 vamos escolher uma cor e vai nos restar 4, já que os retângulos devem ser pintados com duas cores e retângulos de mesmo lado não podem ter a mesma cor.
Em R3 vamos ter 1 possibilidade, que é a cor escolhida em R1, e R4 também vamos ter somente 1 possibilidade, que é a cor escolhida em R2. Ou seja, temos que pintar o retângulo "cor-sim cor-não" somente com duas cores.
R1 = 5 possibilidades
R2 = 4 possibilidades
R3 = 1 possibilidade
R4 = 1 possibilidade
R1 * R2 * R3 * R4 = 20
Espero ter ajudado!
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Maria Livia » Dom Mai 19, 2013 00:23
obg!
-
Maria Livia
- Usuário Parceiro

-
- Mensagens: 79
- Registrado em: Seg Ago 13, 2012 13:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por anaflaviasouza » Sex Mar 14, 2014 17:27
Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas coresé?
tive um pouco de dificuldade em entender a resolução apresentada aqui, porque utilizar as 5 cores se no final do exercício ele deixou definido que os quatro retângulos fossem pintados com apenas duas cores?
-
anaflaviasouza
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Mar 14, 2014 17:18
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: meio ambiente
- Andamento: formado
por anaflaviasouza » Sex Mar 14, 2014 18:23
anaflaviasouza escreveu:Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas coresé?
tive um pouco de dificuldade em entender a resolução apresentada aqui, porque utilizar as 5 cores se no final do exercício ele deixou definido que os quatro retângulos fossem pintados com apenas duas cores?
-
anaflaviasouza
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Mar 14, 2014 17:18
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: meio ambiente
- Andamento: formado
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.