• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Indução] Prove para todo n inteiro

[Indução] Prove para todo n inteiro

Mensagempor +danile10 » Qua Fev 13, 2013 19:46

Prove que para todo inteiro positivo n vale:

P: 1² + 2² + 3² + ... + n² = n(2n+1)(n+1) / 6


Para P(1) já comprovei que a sentença é verdadeira.

Para P(k) seria 1² + 2² + 3² + ... + k² = k(2k+1)(k+1) / 6

Para p(k+1) seria 1² + 2² + 3² + ... + k² + (K+1)² = (K+1)(2k+2)(k+3) / 6


Então fiz a seguinte análise: O que torna p(k) = p(k+1) no primeiro lado da igualdade?
Resposta: O acréscimo de (k+1)². E sendo assim, acrescentando (k+1)² do outro lado da igualdade, devo obter o resultado.

Mas o máximo que consegui chegar foi em: (k+1)[6k+6+k(2k+1)] / 6

Como faço isso chegar em (K+1)(2k+2)(k+3) / 6?

Devo colocar algum valor em evidência? Me ajudem por favor
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Indução] Prove para todo n inteiro

Mensagempor +danile10 » Qua Fev 13, 2013 20:05

=   \frac{(k+1)[6k + 6 + k(2k+1)]}{6}

= \frac{(k+1)[(k + 2) + 3k+4+  k(2k+3)]}{6}


Um amigo disse que é pra eu fazer isso, mas não consigo chegar neste resultado, o que ele fez, colocou (k+2) em evidência?
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.