• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Indução] Prove para todo n inteiro

[Indução] Prove para todo n inteiro

Mensagempor +danile10 » Qua Fev 13, 2013 19:46

Prove que para todo inteiro positivo n vale:

P: 1² + 2² + 3² + ... + n² = n(2n+1)(n+1) / 6


Para P(1) já comprovei que a sentença é verdadeira.

Para P(k) seria 1² + 2² + 3² + ... + k² = k(2k+1)(k+1) / 6

Para p(k+1) seria 1² + 2² + 3² + ... + k² + (K+1)² = (K+1)(2k+2)(k+3) / 6


Então fiz a seguinte análise: O que torna p(k) = p(k+1) no primeiro lado da igualdade?
Resposta: O acréscimo de (k+1)². E sendo assim, acrescentando (k+1)² do outro lado da igualdade, devo obter o resultado.

Mas o máximo que consegui chegar foi em: (k+1)[6k+6+k(2k+1)] / 6

Como faço isso chegar em (K+1)(2k+2)(k+3) / 6?

Devo colocar algum valor em evidência? Me ajudem por favor
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Indução] Prove para todo n inteiro

Mensagempor +danile10 » Qua Fev 13, 2013 20:05

=   \frac{(k+1)[6k + 6 + k(2k+1)]}{6}

= \frac{(k+1)[(k + 2) + 3k+4+  k(2k+3)]}{6}


Um amigo disse que é pra eu fazer isso, mas não consigo chegar neste resultado, o que ele fez, colocou (k+2) em evidência?
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}