• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Porque |x|<0 =? e |x|>0 = R\{o}?

Porque |x|<0 =? e |x|>0 = R\{o}?

Mensagempor rodrigonapoleao » Seg Nov 19, 2012 14:37

alguem me pode explicar porque a interpretaçao geometrica do modulo de x<0 é o conjunto vazio enquanto o modulo de x>0 é R\{0}?
por favor
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: Porque |x|<0 =? e |x|>0 = R\{o}?

Mensagempor fraol » Seg Nov 19, 2012 21:25

Olá, boa noite.

O módulo de um número real, por definição é um número positivo ou nulo.

Revendo a definição:

\left|{x}\right| = x quando x \ge 0 e \left|{x}\right| = - x quando x < 0.

Dessa forma analisando as duas expressões que você postou, iremos concluir que para:

\left|{x}\right| < 0 não vamos encontrar um número real que torne essa expressão verdadeira, logo o conjunto-solução é o conjunto vazio.

\left|{x}\right| > 0 vamos encontrar todos os reais, exceto o número 0 como solução.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Porque |x|<0 =? e |x|>0 = R\{o}?

Mensagempor MarceloFantini » Seg Nov 19, 2012 22:56

A interpretação geométrica do módulo é sempre a distância de um ponto até a origem (no caso |x|) ou a distância entre dois pontos no geral (quando escrevemos |x-a|, coincidindo quando a=0).

Note que da forma como está definido, distância é sempre maior ou igual a zero. Logo, o conjunto dos pontos que está a uma distância negativa da origem é vazio, pois não existem pontos cuja distância até a origem seja negativa.

Da mesma forma, o conjunto dos pontos cuja distância até a origem é maior que zero é o conjunto de todos os números reais diferentes de zero, pois a distância de zero a ele mesmo é zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59