• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Porque |x|<0 =? e |x|>0 = R\{o}?

Porque |x|<0 =? e |x|>0 = R\{o}?

Mensagempor rodrigonapoleao » Seg Nov 19, 2012 14:37

alguem me pode explicar porque a interpretaçao geometrica do modulo de x<0 é o conjunto vazio enquanto o modulo de x>0 é R\{0}?
por favor
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: Porque |x|<0 =? e |x|>0 = R\{o}?

Mensagempor fraol » Seg Nov 19, 2012 21:25

Olá, boa noite.

O módulo de um número real, por definição é um número positivo ou nulo.

Revendo a definição:

\left|{x}\right| = x quando x \ge 0 e \left|{x}\right| = - x quando x < 0.

Dessa forma analisando as duas expressões que você postou, iremos concluir que para:

\left|{x}\right| < 0 não vamos encontrar um número real que torne essa expressão verdadeira, logo o conjunto-solução é o conjunto vazio.

\left|{x}\right| > 0 vamos encontrar todos os reais, exceto o número 0 como solução.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Porque |x|<0 =? e |x|>0 = R\{o}?

Mensagempor MarceloFantini » Seg Nov 19, 2012 22:56

A interpretação geométrica do módulo é sempre a distância de um ponto até a origem (no caso |x|) ou a distância entre dois pontos no geral (quando escrevemos |x-a|, coincidindo quando a=0).

Note que da forma como está definido, distância é sempre maior ou igual a zero. Logo, o conjunto dos pontos que está a uma distância negativa da origem é vazio, pois não existem pontos cuja distância até a origem seja negativa.

Da mesma forma, o conjunto dos pontos cuja distância até a origem é maior que zero é o conjunto de todos os números reais diferentes de zero, pois a distância de zero a ele mesmo é zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.