• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos - como resolver?

Conjuntos - como resolver?

Mensagempor Guga1981 » Ter Jan 20, 2015 16:08

Amigos, gostaria de postar um exercício, aqui, que tentei fazer, mas me parece que todas as alternativas estão certas, exceto a alternativa A e alternativa C.
Conto com a ajuda de vocês para solucionar essa dúvida.

Dados os conjuntos Ma = {n. a | n \in Naturais} e Mb = {n. b | n \in Naturais}, com a e b naturais não nulos, então Ma é subconjunto de Mb sempre que:
A) a for menor do que b.
B) b for menor do que a.
C) a for divisor de b.
D) b for divisor de a.
E) a e b forem pares.
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Conjuntos - como resolver?

Mensagempor Russman » Qua Jan 21, 2015 01:32

O conjunto M_x=\left \{ n.x \ \left | n \in \mathbb{N}  \right \} representa o conjunto de todos os múltiplos inteiros do número x. Se x \in \mathbb{N} então este conjunto é, vulgarmente, a "tabuada" de x.

Daí, M_a é o conjunto de todos os múltiplos inteiros de a e M_b o conjunto de todos os múltiplos inteiros de b.

Assim, para que M_a seja subconjunto de M_b é preciso que todos os elementos de M_a sejam "encontrados" em M_b.

Ou seja, para qualquer elementos a.n_0 \in M_a é necessário que exista um n_1 tal que n_1.b = n_0 .a para todo n_0.

Logo, como b deve ser natural, é preciso que b seja tal que b=k.a com k natural, já que, daí,

n_1.k.a = n_0.a \Rightarrow n_1.k = n_0.

Portanto, b deve ser divisor de a.

Por exemplo, escolha a=2 e b=6.

Daí,

M_a=\left \{ 2,4,6,8,10,12,14,... \right \}
M_b=\left \{ 6,12,18,24,30,36,... \right \}

Note que , nesse caso, M_b é subconjunto de M_a pois a divide b. Para a situação contrária, que é o caso da questão, é o contrário: b divide a.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Conjuntos - como resolver?

Mensagempor Guga1981 » Qua Jan 21, 2015 16:08

Entendi! Obrigado!
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59