por laura_biscaro » Ter Abr 16, 2013 23:52
Seja S o conjunto solução da inequação

>

. Então:
a) S=R
b) S={x

R/x<1}
c) S={x

R/x>1}
d) S={x

R/x<-1}
e) S={x

R/x>-1}
-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qua Abr 17, 2013 02:15
Vamos introduzir um exemplo numérico semelhante ao exercício postado .
Imagine que temos a seguinte desigualdade

(a) .
Veja que

.
e

.
Pergunta : Dado um

real qualquer ,qual o conjunto solução para

da desigualdade

?
Possível justificativa para a pergunta :
Como

, do ponto de vista de funções ,considerando

temos que

é estritamente crescente (

se

) . Assim , dado um

real ,

é o conjunto solução da desigualdade .Significa que qualquer

que tomarmos no intervalo acima , satisfará a desigualdade (a) .
Suponha que

.Qualquer x em

satisfaz

,não é verdade ?
Agora o que acontece se ao invés de

e

temos ,respectivamente ,

e

?
Dica para o exercício :

(por quê ??) e

.Então ...
Tente concluir ,se não conseguir post suas dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequação Exponencial
por Karina » Sáb Mai 29, 2010 17:31
- 3 Respostas
- 2214 Exibições
- Última mensagem por Douglasm

Seg Mai 31, 2010 15:47
Álgebra Elementar
-
- Inequação exponencial
por Aliocha Karamazov » Seg Abr 11, 2011 22:46
- 2 Respostas
- 1550 Exibições
- Última mensagem por Aliocha Karamazov

Seg Abr 11, 2011 23:11
Funções
-
- [inequação exponencial]
por paola-carneiro » Sáb Abr 07, 2012 18:03
- 2 Respostas
- 4790 Exibições
- Última mensagem por paola-carneiro

Sáb Abr 07, 2012 18:54
Funções
-
- Inequação Exponencial
por Rafael16 » Qui Jul 26, 2012 21:22
- 1 Respostas
- 1099 Exibições
- Última mensagem por DanielFerreira

Qui Jul 26, 2012 21:32
Funções
-
- inequação exponencial
por Danilo » Sáb Ago 25, 2012 01:34
- 2 Respostas
- 1474 Exibições
- Última mensagem por Danilo

Sáb Ago 25, 2012 01:50
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.