por Flordelis25 » Sáb Abr 20, 2013 17:39
Para valores de ? a equação ?(x²+4)= ?x-2 admite solução?
Como faço para chegar no resultado ? < -1 ou ? > 1 ?!
Obrigada :)
P.s: Essa equação é do tipo ?f(x) = g(x) <--> f(x) = g²(x) e g(x) ? 0
-
Flordelis25
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 20, 2013 17:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sáb Abr 20, 2013 18:26
Olá
Flordelis25,
seja bem-vinda!!
![\\ \sqrt{x^2 + 4} = \lambda x - 2 \\\\ \left ( \sqrt{x^2 + 4} \right )^2 = \left (\lambda x - 2 \right )^2 \\\\ x^2 + 4 = \lambda ^2 x^2 - 4\lambda x + 4 \\\\ (1 - \lambda ^2)x^2 + 4\lambda x = 0 \\\\ x\left [ (1 - \lambda ^2)x + 4 \right ] = 0 \\\\ \\ \sqrt{x^2 + 4} = \lambda x - 2 \\\\ \left ( \sqrt{x^2 + 4} \right )^2 = \left (\lambda x - 2 \right )^2 \\\\ x^2 + 4 = \lambda ^2 x^2 - 4\lambda x + 4 \\\\ (1 - \lambda ^2)x^2 + 4\lambda x = 0 \\\\ x\left [ (1 - \lambda ^2)x + 4 \right ] = 0 \\\\](/latexrender/pictures/a7f4098951380db9b78491993e0f0476.png)
Note que essa equação é da forma

.
Com isso, sabemos que uma das raízes é nula!
Por conseguinte,

Fazendo o estudo de sinais (denominador) chegamos ao resposta desejada.
Espero ter ajudado!!
Att,
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Flordelis25 » Sex Mai 24, 2013 17:17
Obrigada Daniel

-
Flordelis25
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 20, 2013 17:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Irracional
por luanxd » Ter Fev 09, 2010 23:44
- 2 Respostas
- 1971 Exibições
- Última mensagem por MarceloFantini

Qua Fev 10, 2010 12:38
Sistemas de Equações
-
- equação irracional
por Rosana Vieira » Ter Nov 29, 2011 13:51
- 1 Respostas
- 1521 Exibições
- Última mensagem por ivanfx

Ter Nov 29, 2011 15:04
Funções
-
- Equação irracional
por PeterHiggs » Sex Set 28, 2012 12:33
- 2 Respostas
- 1452 Exibições
- Última mensagem por PeterHiggs

Sex Set 28, 2012 22:14
Álgebra Elementar
-
- Equaçao Irracional
por Amanda91 » Qua Jul 10, 2013 03:05
- 3 Respostas
- 1696 Exibições
- Última mensagem por DanielFerreira

Sáb Nov 02, 2013 09:14
Equações
-
- [Equação irracional]
por Victor985 » Qui Dez 12, 2013 20:37
- 1 Respostas
- 1033 Exibições
- Última mensagem por DanielFerreira

Ter Fev 11, 2014 13:38
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.