• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação irracional

Equação irracional

Mensagempor Flordelis25 » Sáb Abr 20, 2013 17:39

Para valores de ? a equação ?(x²+4)= ?x-2 admite solução?

Como faço para chegar no resultado ? < -1 ou ? > 1 ?!

Obrigada :)

P.s: Essa equação é do tipo ?f(x) = g(x) <--> f(x) = g²(x) e g(x) ? 0
Flordelis25
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 20, 2013 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação irracional

Mensagempor DanielFerreira » Sáb Abr 20, 2013 18:26

Olá Flordelis25,
seja bem-vinda!!

\\ \sqrt{x^2 + 4} = \lambda x - 2 \\\\ \left ( \sqrt{x^2 + 4} \right )^2 = \left (\lambda x - 2 \right )^2 \\\\ x^2 + 4 = \lambda ^2 x^2 - 4\lambda x + 4 \\\\ (1 - \lambda ^2)x^2 + 4\lambda x = 0 \\\\ x\left [ (1 - \lambda ^2)x + 4 \right ] = 0 \\\\

Note que essa equação é da forma ax^2 + bx = 0.

Com isso, sabemos que uma das raízes é nula!

Por conseguinte,

\\ (1 - \lambda ^2)x + 4 = 0 \\\\ x = - \frac{4}{1 - \lambda ^2} \\\\\\ x = \frac{4}{\lambda ^2 - 1}

Fazendo o estudo de sinais (denominador) chegamos ao resposta desejada.

Espero ter ajudado!!

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equação irracional

Mensagempor Flordelis25 » Sex Mai 24, 2013 17:17

Obrigada Daniel :D
Flordelis25
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 20, 2013 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.