• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não sei nem como me mexer.

Não sei nem como me mexer.

Mensagempor Thiago 86 » Ter Mar 12, 2013 07:42

As raizes da equação {x}^{2} - ax +b =0 são 1 e 2. Então é verdade que:
a){a}^{2} + {b}^{2} = a+5b
b){a}^{2} - {b}^{2}=1
c)2a - {a}^{2}=b
d){a}^{2} - 3a=-b
Não sei nem como me mexer para resolver essa questão.
Gostaria de saber se alguem tem um bom livro de matemática que possa me enviar para eu estudar.
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: Não sei nem como me mexer.

Mensagempor Douglas16 » Ter Mar 12, 2013 11:13

Estou respondendo com boa intenção de te ajudar.
Eu estou escrevendo um material didático para ajudar as pessoas aprenderem matemática. Por enquanto não sei se poderei disponibilizar o assunto que você quer, pois a edição do material não chegou em álgebra intermediária, estou iniciando a edição do segundo assunto de álgebra básica, que é simplificação de expressões algébricas.
Então se você quiser posso passar exercícios que te auxiliem a aprender, mas aí você escolhe se você quer que eu passe aqui no site por meio dos posts ou via e-mail, ou via Skype ou via hangout do google. Fico feliz em ter como ajudar, por isso é só deixar suas respostas aqui.
Mas tente também, se quiser, dar uma investigada no tópico de materiais do IME-USP aqui no site mesmo, lá no fim da página principal.
Então se precisar deixe mais um comentário aqui, pois também tem outras pessoas aqui do fórum que podem te ajudar, talvez estejam ocupados no momento.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Não sei nem como me mexer.

Mensagempor Thiago 86 » Ter Mar 12, 2013 14:31

Obrigado pela sua atenção douglas16. Ficarei muito grato se você poder enviar os exercícios por email, pois ficaria mais fácil de eu visualizar. Sua ajuda contribuirá para a realização dos meus projetos de vida. :y:
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: Não sei nem como me mexer.

Mensagempor Douglas16 » Ter Mar 12, 2013 14:46

Então, a questão é que não tenho muito tempo para digitar os exercícios, por isso se eu pudesse passar oralmente seria melhor, mas caso isso não seja possível para você, e se for importante como disse, posso fazer uma lista por dia por exemplo e te entregar ao final do dia (à noite), se Deus quiser é claro, e enviar por e-mail para você. Manda um e-mail para 323silva@gmail.com, pois é esse e-mail que vou usar para te mandar os exercícios.
Blz?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D