por mrclsaraiva » Sex Abr 28, 2017 23:42
Qual o valor de
![A=\sqrt[]{{2}^{20}+{2}^{23}} A=\sqrt[]{{2}^{20}+{2}^{23}}](/latexrender/pictures/9f474edb4a42633632aa67728e45ed51.png)
Preciso diminuir a expressão,
Tentei da seguinte forma:
![\sqrt[]{{2}^{20}}+\sqrt[]{{2}^{23}}
1024+\sqrt[]{{2}^{20}* {2}^{3}}
1024+1024* \sqrt[]{{2}^{3}}
2048* \sqrt[]{{2}^{3}} \sqrt[]{{2}^{20}}+\sqrt[]{{2}^{23}}
1024+\sqrt[]{{2}^{20}* {2}^{3}}
1024+1024* \sqrt[]{{2}^{3}}
2048* \sqrt[]{{2}^{3}}](/latexrender/pictures/1b124b9eff4db59fa1c027297e38e581.png)
O gabarito da questão diz que a resposta é:

Como chego nesse resultado? mas quero saber as propriedades aplicadas para aprender como faz
Obrigado galera...
-
mrclsaraiva
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Abr 28, 2017 22:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por petras » Qua Mai 03, 2017 20:11
-
petras
- Usuário Parceiro

-
- Mensagens: 58
- Registrado em: Sex Jan 22, 2016 21:19
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por mrclsaraiva » Qui Mai 04, 2017 09:55
Não entendi como

se transforma em

-
mrclsaraiva
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Abr 28, 2017 22:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por petras » Ter Ago 01, 2017 12:56
Coloca-se em evidência e utilize a propriedade de potenciação:
mesma base : a base se mantem e soma-se os expoentes
2^23 = 2^20 .2^3
-
petras
- Usuário Parceiro

-
- Mensagens: 58
- Registrado em: Sex Jan 22, 2016 21:19
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação com Radiciação no denominador
por victorym1 » Ter Mar 24, 2015 21:33
- 0 Respostas
- 1199 Exibições
- Última mensagem por victorym1

Ter Mar 24, 2015 21:33
Equações
-
- Equação exponencial???
por azheng » Sáb Nov 21, 2009 19:47
- 0 Respostas
- 1553 Exibições
- Última mensagem por azheng

Sáb Nov 21, 2009 19:47
Álgebra Elementar
-
- Equação Exponencial
por Adriana Baldussi » Seg Nov 23, 2009 14:41
- 3 Respostas
- 2704 Exibições
- Última mensagem por Molina

Seg Nov 23, 2009 17:07
Álgebra Elementar
-
- Equação Exponencial
por LeonardoSantos » Ter Fev 16, 2010 14:11
- 1 Respostas
- 2712 Exibições
- Última mensagem por Douglasm

Ter Fev 16, 2010 15:46
Funções
-
- Equação exponencial
por cristina » Sex Jun 04, 2010 20:19
- 1 Respostas
- 2165 Exibições
- Última mensagem por Mathmatematica

Sáb Jun 05, 2010 00:27
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.