• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial iezzi 71

Equação exponencial iezzi 71

Mensagempor BrunoLima » Sáb Nov 23, 2013 21:38

Uma ajuda aqui por favor..

8^x-3.4^x - 3.2^{x+1}+8=0

Eu tentei..

2^{3x}-3.2^{2x}-3.2^x.2=0

-3.2^{2x}-3.2^x=-2^{3x}-2^3

Daqui em diante eu tentei continua mas não deu certo.. alguma sugestão?
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor e8group » Sáb Nov 23, 2013 22:50

Neste caso tome 2^x = \lambda ,temos

\lambda^3 - \lambda^2 - 6 \lambda + 8 = 0 .Determinando as raízes positivas desta equação ,a solução para x será x = log_2 \lambda .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor BrunoLima » Sáb Nov 23, 2013 22:58

olá santhiago, não é para utilizar log, eu acredito que deva ser feita uma substituição tbm, mas transformando em uma equação de segundo grau. pois a resposta é {0,2}
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor e8group » Sáb Nov 23, 2013 23:06

Editado .

Sim é esta substituição mesmo . Fazendo 2^x= \lambda teremos

\lambda^3 -3 \lambda^2 - 6 \lambda + 8 = 0 .

É fácil ver que 1 é raiz desta equação . Dividindo a mesma por \lambda - 1 ,pode determinar as demais raízes aplicando a fórmula resolvente p/ eq. grau 2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor e8group » Sáb Nov 23, 2013 23:21

Acrescentando , como todos coeficientes são números inteiros , há de ter uma raiz que é divisora do termo independente 8 . Poderia testar 2,4,8 ,um deste números satisfaz a eq . p/ \lambda além do número 1 que verifiquemos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor BrunoLima » Dom Nov 24, 2013 00:00

Entendi santhiago, perfeita sua explicação muito obrigado^^
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: