• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do Segundo grau

Equação do Segundo grau

Mensagempor Damaris Ribeiro » Sáb Abr 20, 2013 03:05

ajuda nessa questão
Determine m de modo que a equação (m+1)x^2+2x+m-1=0 tenhas raízes positivas gabarito : -\sqrt{2}<m<-1
Damaris Ribeiro
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Abr 18, 2013 12:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação do Segundo grau

Mensagempor timoteo » Sáb Abr 20, 2013 14:35

Olá.

(m + 1){x}^{2} + 2x + (m - 1), achando o valor de delta:

{b}^{2} - 4 . a . c ---> 4 - 4 (m + 1) (m - 1) ---> - 4{m}^{2} + 8, porém, para termos raízes teremos que ter delta maior que zero: - 4{m}^{2} + 8 > 0 ---> m > ?­ \sqrt[]{2}, como o valor positivo não é maior que zero então, usamos o valor negativo: m >- \sqrt[]{2}.

Continuando o calculo chegamos em Baskara:
x1 = \frac{- b +­ \sqrt[]{\Delta}}{2a}, e x2 = \frac{- b - \sqrt[]{\Delta}}{2a}, donde vem que: 2a = 2m + 2 > 0 ---> m > -1 ou 2a = 2m + 2 < 0 ---> m < -1, como o primeiro valor de m que encontramos era -\sqrt[]{2} então, o valor que encaixa com a resposta é m < -1. Pois, se o contrário ocorresse então, excluiríamos o primeiro valor de m > -\sqrt[]{2}.

S = { -\sqrt[]{2} < m < -1}.

Espero ter ajudado!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?