• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração (número primo)

Demonstração (número primo)

Mensagempor Shetach Hefker » Qui Jan 10, 2013 19:01

Olá amigos, alguém poderia me ajudar a resolver a seguinte demonstração? "Prove que todo número primo maior que 2 é impar". Não encontrei qualquer referência sobre esta questão, motivo pelo qual qualquer ajuda será bem vinda. Obrigado
Shetach Hefker
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 10, 2013 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Demonstração (número primo)

Mensagempor young_jedi » Qui Jan 10, 2013 20:38

todos os numeros pares são divisiveis por dois, portanto não podem ser primos alem do proprio 2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Demonstração (número primo)

Mensagempor Shetach Hefker » Qui Jan 10, 2013 20:45

young_jedi escreveu:todos os numeros pares são divisiveis por dois, portanto não podem ser primos alem do proprio 2


Olá young, ocorre o seguinte: tal assertiva deverá ser demonstrada. Por exemplo: "se n é par, então n^2 também é par". Dai demonstra-se que um número par é da forma n=2k e que (2K)^2 é igual a 4k^2, que é igual a 2(2k^2). Fazendo 2k^2 = z, temos 2z, que também é par. Estes procedimentos deverão ser adotados também para a resolução do enunciado que fiz em relação aos números primos. Sua colocação é consistente, mas falta a prova. É neste sentido que gostaria de contar com a ajuda de vocês.

Complementando, sei que tal resposta é baseada na conclusão por absurdo. Também verifica-se, através dos estudos de Euler, que nem todo número ímpar maior que 2 é primo. Mas a demonstração disso, teoricamente falando, é algo difícil. Há muitas demonstrações relativas as questões envolvendo números primos, mas com relação a este que fiz acima não encontrei uma demonstração.

Este exercício encontra-se na página 9, número 1, do livro "Análise Matemática - Geraldo Ávila" (tenho em pdf se precisar). A resposta do livro é bem evasiva: "Propomos aqui uma propriedade muito simples dos números primos. Nâo obstante isso, ela precisa ser demonstrada; e a demonstração pode ser feita por redução ao absurdo, confrontando a definição de número primo com a suposição de que o número primo em questão seja maior que 2".

Aí está o problema, como demonstrar?
Shetach Hefker
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 10, 2013 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Demonstração (número primo)

Mensagempor young_jedi » Qui Jan 10, 2013 22:13

bom vamos supor um numero primo maior que 2, dizemos que esse numero é x
agora se x é primo então ele é divisivel somente por si mesmo e por 1

agora vamos supor que x seja par portanto ele pode ser escrito como

x=2.k

onde k pode ser qualquer numero inteiro positivo, mais se dividirmos x por 2 teremos

\frac{x}{2}=k

como k é um numero inteiro então x é divisivel por 2, ou seja x é divisivel por ele mesmo, por 1 e por 2, portanto x não pode ser um numero primo.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Demonstração (número primo)

Mensagempor Shetach Hefker » Qui Jan 10, 2013 22:48

young_jedi escreveu:bom vamos supor um numero primo maior que 2, dizemos que esse numero é x
agora se x é primo então ele é divisivel somente por si mesmo e por 1

agora vamos supor que x seja par portanto ele pode ser escrito como

x=2.k

onde k pode ser qualquer numero inteiro positivo, mais se dividirmos x por 2 teremos

\frac{x}{2}=k

como k é um numero inteiro então x é divisivel por 2, ou seja x é divisivel por ele mesmo, por 1 e por 2, portanto x não pode ser um numero primo.



Sua resposta é muito interessante, e consistente. Comparei seus argumentos com os princípios que norteiam os números primos e entendi que atendem perfeitamente as regras neles estabelecidas,senão vejamos: Dizemos que n é um número primo se seus únicos divisores positivos são a unidade e ele mesmo (isso ficou provado na sua demonstração). Caso contrário, dizemos que n é composto. Em outras palavras, um número natural n > 1 é primo se sempre que escrevermos n = a.b, com a.b E N, temos necessariamente a = 1; b = n ou a = n; b = 1. Consequentemente um número natural n > 1 é composto se existem a.b E N, com 1 < a < n e 1 < b < n, tais que n = a.b. Então com base no que respondeu, podemos concluir que: 1) O número 1 não e primo nem composto; 2) Se a E Z, a > 0, então ou a é primo, ou a é composto, ou a = 1; 3) O número 2 é o único natural par que é primo; 4) De acordo com a de finição acima, para decidir se um dado número n é primo é necessário verificar a divisibilidade dele (o que foi feito por você) por todos os números naturais menores que ele, o que é extremamente trabalhoso a medida que avançamos na sequencia dos números naturais. De fato, se x fosse primo e como x > 2, não existiriam naturais a e b tais que x = ab, onde 1 < a < x e 1 < b < x. Portanto, x não é primo. Pra mim a solução é esta que você bem relatou. Solução por redução ao absurdo, mediante comparação com as propriedades do números pares/ímpares. Era isso!!! Só tenho a agradecer, foi muito útil e interessante o modo como bem delineou a resposta. Obrigado mesmo!
Shetach Hefker
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 10, 2013 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D