Considere a equação x1\vec{a}+y1\vec{b}+z1\vec{c}=x2\vec{a}+y2\vec{b}+z2\vec{c}.
a)Mostre que se \vec{a}, \vec{b}, e \vec{c} são LI, então x1=x2,y1=y2 e z1=z2.
b) Mostre que se \vec{a},\vec{b} e \vec{c} são LD então não podemos concluir que x1=x2,y1=y2 e z1=z2.

um espaço vetorial tal que
linearmente independente (L.I.) .
os vetores que são escritos como combinação linear de
, isto é
.
se exprimir de forma única como combinação linear dos
então
.
se e somente se (sse)
sse
.Como
,segue-se por definição de independência linear que todos escalares
são nulos e portanto
.
fosse L.D. ,alguns dos escalares
seria não nulo e com isso não podemos concluir a igualdade
para todo
. ![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)