• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dependência e independência linear

Dependência e independência linear

Mensagempor MtHenrique » Dom Mai 04, 2014 11:38

Considere a equação x1\vec{a}+y1\vec{b}+z1\vec{c}=x2\vec{a}+y2\vec{b}+z2\vec{c}.
a)Mostre que se \vec{a}, \vec{b}, e \vec{c} são LI, então x1=x2,y1=y2 e z1=z2.
b) Mostre que se \vec{a},\vec{b} e \vec{c} são LD então não podemos concluir que x1=x2,y1=y2 e z1=z2.
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor e8group » Dom Mai 04, 2014 13:05

Apresento uma ideia mais geral :

Seja E um espaço vetorial tal que \{v_1,v_2 , \hdots , v_m \} \subset E linearmente independente (L.I.) .

Seja v' \in E os vetores que são escritos como combinação linear de v_{i's} , isto é

v' =  \sum_{i=1}^m \alpha_i v_i  =   \alpha_1 v_1 +  \hdots  +  \alpha_m v_m  ;  \alpha_i \in \mathbb{R} .

Afirmamos que v' se exprimir de forma única como combinação linear dos v_{i's} , em outras palavras ,

Se v' =  \sum_{i=1}^m \alpha_i v_i  = \sum_{i=1}^m \beta_i v_i então \alpha_i = \beta_i  ,  i= 1 ,2,\hdots , m .

De fato ,

v' =  \sum_{i=1}^m \alpha_i v_i  =    \alpha_1 v_1 +  \hdots  +  \alpha_m v_m   = \sum_{i=1}^m \beta_i v_i = \beta_1 v_1 +  \hdots  +  \beta_m v_m se e somente se (sse) \alpha_1 v_1 +  \hdots  +  \alpha_m v_m -( \beta_i v_i = \beta_1 v_1 +  \hdots  +  \beta_m v_m)   = O_E sse (\alpha_1 - \beta_1) v_1 + \hdots +  (\alpha_m - \beta_m) v_m   = O_E .Como \{v_1,v_2 , \hdots , v_m \} L.I ,segue-se por definição de independência linear que todos escalares \alpha_i - \beta_i são nulos e portanto \alpha_i = \beta_i , i = 1 ,2,3 , \hdots , m .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor MtHenrique » Dom Mai 04, 2014 18:03

Ajudou bem ;) , obrigado, mas você consegue resolver a letra b)?
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor e8group » Dom Mai 04, 2014 22:43

Dica :

Se \{v_1, \hdots , v_m \} fosse L.D. ,alguns dos escalares \alpha_i  - \beta_i seria não nulo e com isso não podemos concluir a igualdade \alpha_i = \beta_i para todo i = 1 , ...,m .

Este raciocínio deve ser utilizado no item b.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron