por MtHenrique » Dom Mai 04, 2014 11:38
Considere a equação x1\vec{a}+y1\vec{b}+z1\vec{c}=x2\vec{a}+y2\vec{b}+z2\vec{c}.
a)Mostre que se \vec{a}, \vec{b}, e \vec{c} são LI, então x1=x2,y1=y2 e z1=z2.
b) Mostre que se \vec{a},\vec{b} e \vec{c} são LD então não podemos concluir que x1=x2,y1=y2 e z1=z2.
-
MtHenrique
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mai 04, 2014 11:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrônica
- Andamento: cursando
por e8group » Dom Mai 04, 2014 13:05
Apresento uma ideia mais geral :
Seja

um espaço vetorial tal que

linearmente independente (L.I.) .
Seja

os vetores que são escritos como combinação linear de

, isto é

.
Afirmamos que

se exprimir de forma única como combinação linear dos

, em outras palavras ,
Se

então

.
De fato ,

se e somente se (sse)

sse

.Como

,segue-se por definição de independência linear que todos escalares

são nulos e portanto

.
Espero que ajude .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MtHenrique » Dom Mai 04, 2014 18:03
Ajudou bem

, obrigado, mas você consegue resolver a letra b)?
-
MtHenrique
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mai 04, 2014 11:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrônica
- Andamento: cursando
por e8group » Dom Mai 04, 2014 22:43
Dica :
Se

fosse L.D. ,alguns dos escalares

seria não nulo e com isso não podemos concluir a igualdade

para todo

.
Este raciocínio deve ser utilizado no item b.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [GA] Dependência e Independência Linear
por Larissa28 » Ter Mar 31, 2015 20:43
- 1 Respostas
- 1658 Exibições
- Última mensagem por adauto martins

Qua Abr 01, 2015 13:13
Geometria Analítica
-
- [GA] Dependência e Independência Linear
por Larissa28 » Dom Set 27, 2015 22:10
- 1 Respostas
- 2544 Exibições
- Última mensagem por nakagumahissao

Qua Set 30, 2015 15:36
Sequências
-
- [Vetores] Dependência e Independência linear
por Eli Andrade » Seg Fev 04, 2019 16:29
- 0 Respostas
- 6808 Exibições
- Última mensagem por Eli Andrade

Seg Fev 04, 2019 16:29
Geometria Analítica
-
- [Geometria Analítica] Dependência e independência linear
por Aliocha Karamazov » Qua Out 12, 2011 12:43
- 2 Respostas
- 2202 Exibições
- Última mensagem por Aliocha Karamazov

Qua Out 26, 2011 21:57
Geometria Analítica
-
- Independência Linear
por apotema2010 » Sex Mai 14, 2010 12:20
- 0 Respostas
- 1326 Exibições
- Última mensagem por apotema2010

Sex Mai 14, 2010 12:20
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.