• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dependência e independência linear

Dependência e independência linear

Mensagempor MtHenrique » Dom Mai 04, 2014 11:38

Considere a equação x1\vec{a}+y1\vec{b}+z1\vec{c}=x2\vec{a}+y2\vec{b}+z2\vec{c}.
a)Mostre que se \vec{a}, \vec{b}, e \vec{c} são LI, então x1=x2,y1=y2 e z1=z2.
b) Mostre que se \vec{a},\vec{b} e \vec{c} são LD então não podemos concluir que x1=x2,y1=y2 e z1=z2.
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor e8group » Dom Mai 04, 2014 13:05

Apresento uma ideia mais geral :

Seja E um espaço vetorial tal que \{v_1,v_2 , \hdots , v_m \} \subset E linearmente independente (L.I.) .

Seja v' \in E os vetores que são escritos como combinação linear de v_{i's} , isto é

v' =  \sum_{i=1}^m \alpha_i v_i  =   \alpha_1 v_1 +  \hdots  +  \alpha_m v_m  ;  \alpha_i \in \mathbb{R} .

Afirmamos que v' se exprimir de forma única como combinação linear dos v_{i's} , em outras palavras ,

Se v' =  \sum_{i=1}^m \alpha_i v_i  = \sum_{i=1}^m \beta_i v_i então \alpha_i = \beta_i  ,  i= 1 ,2,\hdots , m .

De fato ,

v' =  \sum_{i=1}^m \alpha_i v_i  =    \alpha_1 v_1 +  \hdots  +  \alpha_m v_m   = \sum_{i=1}^m \beta_i v_i = \beta_1 v_1 +  \hdots  +  \beta_m v_m se e somente se (sse) \alpha_1 v_1 +  \hdots  +  \alpha_m v_m -( \beta_i v_i = \beta_1 v_1 +  \hdots  +  \beta_m v_m)   = O_E sse (\alpha_1 - \beta_1) v_1 + \hdots +  (\alpha_m - \beta_m) v_m   = O_E .Como \{v_1,v_2 , \hdots , v_m \} L.I ,segue-se por definição de independência linear que todos escalares \alpha_i - \beta_i são nulos e portanto \alpha_i = \beta_i , i = 1 ,2,3 , \hdots , m .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor MtHenrique » Dom Mai 04, 2014 18:03

Ajudou bem ;) , obrigado, mas você consegue resolver a letra b)?
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor e8group » Dom Mai 04, 2014 22:43

Dica :

Se \{v_1, \hdots , v_m \} fosse L.D. ,alguns dos escalares \alpha_i  - \beta_i seria não nulo e com isso não podemos concluir a igualdade \alpha_i = \beta_i para todo i = 1 , ...,m .

Este raciocínio deve ser utilizado no item b.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D